Marius-F. Danca
In top 2% of scientists by citations-score in the Scopus (Elsevier, Standford) data base: 2019, 2020, 2021, 2023
h-index: 22 (Clarivate Analytics October 2024)
Sum of Times Cited (Clarivate Analytics October 2024): 1500+
Citing Articles (Clarivate Analytics October 2024): 1000+
1. WOS papers
|
Paper | DOI |
103 | Michal Feckan, Marius-F. Danca, Guanrong Chen, Fractional Differential Equations with Impulsive Effects, Fractal and Fractional, 2024, 8(9), 500 | |
102 | Marius-F. Danca, Michal Feckan, Memory Principle of the MATLAB Code for Lyapunov Exponents of Fractional-Order, International Journal of Bifurcation and Chaos, 2024, 2450156 | |
101 | Michal Feckan, Marius-F. Danca, Guanrong Chen, Fractional Differential Equations with Impulsive Effects, Fractal and Fractiona2024, 8(9), 500 | |
100 | Marius-F. Danca, Guanrong Chen, Approximation and decomposition of attractors of a Hopfield neural network system, Chaos, Solitons & Fractals, 2024, 186, 115213 | |
99 | Marius-F. Danca, Chaotic hidden attractor in a fractional order system modelling the interaction between dark matter and dark energy, Communications in Nonlinear Science and Numerical Simulation, 2024, 131, 107838 | |
98 | Marius-F. Danca, Mandelbrot set as a particular Julia set of Fractional Order, echipotential lines and external rays of Mandelbrot and Julia sets of Fractional Order, Fractal Fract. 2024, 8(1), 69 | |
97 | Marius-F. Danca, Jagan Mohan Jonnalagadda, On the solutions of a class of discrete PWC systems modeled with Caputo-type delta fractional difference, Fractal Fract, 2023, 7(4), 304 | |
96 | Michal Feckan, Marius-F. Danca, Non-Periodicity of Complex Caputo Like Fractional Differences, Fractal Fract, 2023, 1, 0 | DOI: 10.3390/fractalfract1010000 |
95 | Marius-F. Danca, Michal Feckan, Mandelbrot set and Julia sets of fractional order, Nonlinear Dynamics, 2023, 111,9555–9570 | DOI: 10.1007/s11071-023-08311-2 |
94 | Marius-F. Danca, On the Stability Domain of a Class of Linear Systems of Fractional Order, Fractal Fract. 2023, 7, 49 | DOI: 10.3390/fractalfract7010049 |
93 | Marius-F. Danca, Controlling the dynamics of a COVID-19 mathematical model using a parameter switching algorithm, Mathematical Methods in the Applied Sciences, 2023;1–13 | DOI: 10.1002/mma.9014 |
92 | Michal Feckan, Michal Pospisil, Marius-F. Danca, JinRong Wang, Caputo delta weakly fractional difference equations, Fract. Calc. Appl. Anal., 2022 | |
91 | Marius.-F. Danca, Symmetry-breaking and bifurcation diagrams of fractional-order maps, CNSNS, 116, 2023, 106760 | |
90 | Marius.-F. Danca, Fractional order logistic map: Numerical approach, Chaos, Solitons & Fractals, 157, 2022, 111851 | |
89 | Marius.-F. Danca, Nikolay Kuznetsov, D3 Dihedral Logistic Map of Fractional Order,
Mathematics 2022, 10, 213 |
DOI: 10.3390/math10020213 |
88 | Marius.-F. Danca, Michal Feckan, Nikolay Kuznetsov, Guanrong Chen, Coupled Discrete Fractional-Order Logistic Maps, Mathematics 2021, 9, 2204 |
|
87 | Marius.-F. Danca, Hopfield Neuronal Network of Fractional Order: A note on its numerical integration, Chaos, Solitons & Fractals, 151 (2021) 111219 |
|
86 | Marius.-F. Danca, Matlab code for Lyapunov exponents of fractional-order systems, Part II: The non-commensurate case, International Journal of Bifurcation and Chaos, 31(12), 2150187, (2021) |
|
85 | Marius.-F. Danca, Nikolay Kuznetsov, Hidden strange nonchaotic attractors, Mathematics, 9(6), 652 (2021) | |
84 | Marius.-F. Danca, Michal Feckan, Nikolay Kuznetsov, Guanrong Chen, Attractor as a convex combination of a set of attractors, CNSNS, 96, 105721 (2021) | DOI:10.1016/j.cnsns.2021.105721 |
83 | Marius.-F. Danca, Marek Lampart, Hidden and self-exited attractors in a heterogeneous Cournot oligopoly model, Chaos, Solitons & Fractals, 142, 110371 (2021) |
DOI:/10.1016/j.chaos.2020.110371 |
82 | Marius.-F. Danca, Coexisting Hidden and self-excited attractors in an economic system of integer or fractional order, International Journal of Bifurcation and Chaos, 31(4) 2150062 (2021) |
DOI:/10.1142/S0218127421500620 |
81 | Marius.-F. Danca, Puu system of fractional order and its chaos suppression, Symmetry 12(3), 340 (2020) |
DOI: 10.3390/sym12030340 |
80 | Marius.-F. Danca, Michal Feckan, Nikolay Kuznetsov, Chaos control in the fractional order logistic map via impulses, Nonlinear Dynamics, 98,(2), 1219–1230 (2019) |
DOI: 10.1007/s11071-019-05257-2 |
79 |
Marius.-F. Danca, Michal Feckan, Nikolay Kuznetsov, Guanrong Chen, Rich dynamics and anticontrol of extinction in a prey-predator system, Nonlinear Dynamics, 98, (2), 1421–1445, (2019) | DOI: 10.1007/s11071-019-05272-3 |
78 |
Marius.-F. Danca, Michal Feckan, Chaos suppression in a Gompertz-like discrete system of fractional order, International Journal of Bifurcation and Chaos, 30,(3) 2050049, (2020) |
DOI: 10.1142/S0218127420500492 |
77 |
Marius.-F. Danca, Michal Feckan, Hidden chaotic attractors and chaos suppression in an impulsive discrete economical supply and demand dynamical system, Communications in Nonlinear Science and Numerical Simulation, 74, 1-13, (2019) |
DOI:/10.1016/j.cnsns.2019.03.008 |
76 |
Marius.-F. Danca, Paul Bourke, Nikolay Kuznetsov, Graphical structure of attraction basins of hidden attractors: the Rabinovich-Fabrikant system, International Journal of Bifurcation and Chaos, 29(01) 1930001 (2019) | DOI:/10.1142/S0218127419300015 |
75 |
Marius.-F. Danca, Lyapunov exponents of a hyperchaotic discontinuous 4D system of integer and fractional order, Entropy, 20, 337 (2018) |
DOI: 10.3390/e20050337 |
74 |
M. Romera, G. Pastor, Marius.-F. Danca, A. Martin, A.B. Orue, F. Montoya, L. Hernandez, Encinas, E. Tundrea, Bifurcation Diagram of a Map with Multiple Critical Points, International Journal of Bifurcation and Chaos, 1850065 28(05), (2018). | DOI:/10.1142/S0218127418500657 |
73 |
Marius-F. Danca, Nikolay Kuznetsov, Matlab code for Lyapunov exponents of fractional order systems, International Journal of Bifurcation and Chaos, 28(05), 1850067 (2018). |
DOI:/10.1142/S0218127418500670 |
72 |
Marius-F. Danca, Michal Feckan and Michal Pospsil, Difference equations with impulses, Opuscula Mathematica 39(1),5-22 (2019). |
DOI:10.7494/OpMath.2019.39.1.5 |
71 |
Marius-F. Danca, M. Feckan, Nikolay Kuznetsov, Guanrong Chen, Fractional-order PWC systems without zero Lyapunov exponents, Nonlinear Dynamics, 92(3), 1061–1078, (2018). | DOI: 10.1007/s11071-018-4108-2 |
70 |
Marius-F. Danca, Nikolay Kuznetsov, Guanrong Chen, Approximating hidden chaotic attractors via parameter switching, CHAOS, 28, 013127 (2018). | DOI: 10.1063/1.5007925 |
69 |
Marius-F. Danca, M. Feckan, Nikolay Kuznetsov, Guanrong Chen, Complex dynamics, hidden attractors and continuous approximation of a fractional-order hyperchaotic PWC system, Nonlinear Dynamics, 91(4), 2523–2540, (2018). | DOI: 10.1007/s11071-017-4029-5 |
68 |
Marius-F. Danca, M. Feckan, On the numerical integration of discontinuous dynamical systems, International Journal of Bifurcation and Chaos, 27(14) 1750218, (2017). | DOI: 10.1142/S0218127417502182 |
67 |
C. Morel, J.-Y. Morel, Marius-F. Danca, Generalization of the Filippov method for systems with large periodic input, Mathematics and Computers in Simulation, 146, 1-13 (2018). | DOI:10.1016/j.matcom.2017.09.004 |
66 |
Marius-F. Danca, Hidden chaotic attractors in fractional-order systems, Nonlinear Dynamics, 89(1), 577–586 (2017). | DOI: 10.1007/s11071-017-3472-7 |
65 |
Marius-F. Danca, M. Feckan, G. Chen, Impulsive stabilization of chaos in fractional-order systems, Nonlinear Dynamics, 89(3) 1889–1903 (2017). | DOI: 10.1007/s11071-017-3559-1 |
64 |
Marius-F. Danca, Nikolay Kuznetsov, Parameter Switching Synchronization, Applied Mathematics and Computation, 313, 94-102 (2017). | DOI: 10.1016/j.amc.2017.05.075 |
63 |
Marius-F. Danca, Nikolay Kuznetsov, Hidden chaotic sets in a Hopfield neural system, Chaos, Solitons & Fractals, 103, 144-150 (2017). | DOI: 10.1016/j.chaos.2017.06.002 |
62 |
Marius-F. Danca, Nikolay Kuznetsov, Guanrong Chen, Unusual dynamics and hidden attractors of the Rabinovich-Fabrikant system, Nonlinear Dynamics, 88(1), 791–805 (2017). | DOI: 10.1007/s11071-016-3276-1 |
61 |
Marius-F. Danca, Hidden transient chaotic attractors of Rabinovich-Fabrikant system, Nonlinear Dynamics, 86(2), 1263–1270 (2016). | DOI: 10.1007/s11071-016-2962-3 |
60 |
Marius-F. Danca, Joydev Chattopadhyay, Chaos control of Hastings-Powell model by combining chaotic motions, CHAOS, 26(4), 043106 (2016). | DOI: 10.1063/1.4946811 |
59 |
Wallace K. S. Tang, Marius.-F. Danca, Emulating "Chaos + Chaos = Order"' in Chen' s Circuit of Fractional Order by Parameter Switching International Journal of Bifurcation and Chaos, 26, 1650096 (2016) | DOI: 10.1142/S0218127416500966 |
58 |
Marius.-F. Danca, Wallace K. S. Tang, Guanrong Chen, Suppressing chaos in a simplest autonomous memristor-based circuit of fractional order by periodic impulses, Chaos, Solitons & Fractals, 84, 31–40 (2016). | DOI: 10.1016/j.chaos.2015.12.018 |
57 |
Marius.-F. Danca, Wallace K. S. Tang, Parrondo’s paradox for chaos control and anticontrol of fractional-order systems, Chinese Physics B, 25 (1): 010505 (2016). |
DOI: 10.1088/1674-1056/25/1/010505 |
56 |
Marius-F. Danca, Michal Fečkan, Nikolay Kuznetsov, Guanrong Chen, Looking more closely to the Rabinovich-Fabrikant system, International Journal of Bifurcation and Chaos, 26(2), 1650038 (2016). | DOI: 10.1142/S0218127416500383 |
55 |
G. Pastor, M. Romera, Marius-F. Danca, A, Martin, A.B. Orue, F. Montoya, L. Hernandez Encinas, Hidden and non-standard bifurcation diagram of an alternate quadratic system, International Journal of Bifurcation and Chaos, 26(2), 1650036 (2016). | DOI: 10.1142/S021812741650036X |
54 |
Marius-F. Danca, Lyapunov exponents of a class of piecewise continuous systems of fractional order, Nonlinear Dynamics, 81(1), 227-237 (2015). |
DOI: 10.1007/s11071-015-1984-6 |
53 |
Marius-F. Danca, M. A. Aziz-Alaoui, Michal Small. A new piecewise linear Chen system of fractional-order; Numerical approximation of stable attractors, Chinese Physics B, 24(6): 060507 (2015). | |
52 |
M. Romera, G. Pastor, Marius.-F. Danca, A. Martin, A.B. Orue and F. Montoya, Breaking Points in Quartic Maps, International Journal of Bifurcation and Chaos, 25(4), 1550051 (2015). | |
51 |
Marius-F. Danca, Roberto Garrappa, Suppressing chaos in discontinuous systems of fractional order by active control, Applied Mathematics and Computation, 257, 89–102 (2015). | |
50 |
Marius-F. Danca, Synchronization of piece-wise continuous systems of fractional order, Nonlinear Dynamics, 78(3) 2065-2084 (2014). | |
49 |
Marius-F. Danca, Continuous approximations of a class of piecewise continuous systems, International Journal of Bifurcation and Chaos, 25(11), 1550146 (2015). | DOI: 10.1142/S0218127415501461 |
48 |
Marius-F. Danca, Michal Fečkan, Note on a Parameter Switching Method for Nonlinear ODES, Mathematica Slovaca, 66, 439-448 (2016). | DOI: 10.1515/ms-2015-0148 |
47 |
Miguel Romera, Gerardo Pastor, Amalia Orue Lopez, Agustin Martin, Marius-F. Danca and Fausto Montoya, A Method to solve the limitations in drawing external rays of the Mandelbrot set, Mathematical Problems in Engineering, 105283, (2013). | DOI:10.1155/2013/105283 |
46 | Marius-F. Danca, Michal Fečkan, Miguel Romera, Generalized Form of Parrondo's Paradoxical Game with Applications to Chaos Control, International Journal of Bifurcation and Chaos, 24(01), 1450008 (2014). | DOI: 10.1142/S0218127414500084 |
45 | Marius-F. Danca, Nicolae Lung, Parameter switching in a generalized Duffing system: Finding the stable attractors, Applied Mathematics and Computations, 223, 101–114 (2013). |
DOI: 10.1016/j.amc.2013.07.087 |
44 | Yanhong Zheng, Qingyun Wang, Marius-F. Danca, Noise induced complexity: patterns and collective phenomena in a small-world neuronal network, Cognitive Neurodynamics, 8(2), 143-149 (2014). | DOI: 10.1007/s11571-013-9257-x |
43 | Marius-F. Danca, Paul Bourke, Miguel Romera, Graphical exploration of the connectivity sets of alternated Julia sets; M, the set of disconnected alternated Julia sets, Nonlinear Dynamics, 73(1), 1155–1163 (2013). | DOI: 10.1007/s11071-013-0859-y |
42 | Marius-F Danca, Roberto Garrappa, Wallace K. S. Tang, Guanrong Chen, Sustaining stable dynamics of a fractional-order chaotic financial system by parameter switching, Computers and Mathematics with Applications, 66(5), 702–716 (2013).
|
DOI:10.1016/j.camwa.2013.01.028 |
41 | Marius-F Danca, W.K.S. Tang, Q. Wang, G. Chen, Suppressing chaos in fractional-order systems by periodic perturbations on system variables, European Physical Journal B, 86(3); Article number: 79 (2013).
|
DOI:10.1140/epjb/e2012-31008-0 |
40 | Zhuoqin Yang, Qingyun Wang, Marius-F Danca, Jiaoying Zhang, Complex dynamics of compound bursting with burst episode composed of different bursts, Nonlinear Dynamics, 70(3), 2003-2013 (2012). |
DOI: 10.1007/s11071-012-0592-y |
39 | Marius-F. Danca, Convergence of a parameter switching algorithm for a class of nonlinear continuous systems and a generalization of Parrondo's paradox, Communications in Nonlinear Science and Numerical Simulation, 18(3), 500–510 (2013). |
DOI: 10.1016/j.cnsns.2012.08.019 |
38 | Marius-F. Danca, OGY method for a class of discontinuous dynamical systems, Nonlinear Dynamics, 70(2),1523-1534 (2012). |
DOI: 10.1007/s11071-012-0552-6 |
37 | Marius-F. Danca, Chaos suppression via periodic change of variables in a class of discontinuous dynamical systems of fractional order, Nonlinear Dynamics, 70(1), 815-823 (2012). |
DOI: 10.1007/s11071-012-0497-9 |
36 |
Marius-F. Danca Chaos suppression via periodic pulses in a class of piece-wise continuous systems, Computers and Mathematics with Applications, 64(5), 849–855 (2012). |
DOI: 10.1016/j.camwa.2011.12.072 |
35 | Marius-F. Danca, Steliana Codreanu, Modeling numerically the Rikitake's attractors by parameter switching, Journal of the Franklin Institute, 349(3) 861-878 (2012). |
DOI: 10.1016/j.jfranklin.2011.11.014 |
34 | Marius-F. Danca, Dejian Lai, Parrondo's Game Model to Find Numerically the Stable Attractors of a Tumor Growth Model, International Journal of Bifurcation and Chaos, 22(10), 1250258 (2012). |
DOI: 10.1142/S0218127412502586 |
33 | Marius-F. Danca, M. Romera, G. Pastor, and F. Montoya, Finding Attractors of Continuous-Time Systems by Parameter Switching, Nonlinear Dynamics, 67(4), 2317–2342 (2012). |
DOI: 10.1007/s11071-011-0172-6 |
32 | G. Pastor, M. Romera, A. Orue, A. Martin, Marius-F. Danca and F. Montoya, Calculation of the structure of a shrub in the Mandelbrot set, Discrete Dynamics in Nature and Society, 2011, 1-23 (2011). |
DOI: 10.1155/2011/837262 |
31 | Marius-F. Danca, Synthesizing the Lü attractor by parameter-switching, International Journal of Bifurcation and Chaos, 21(1) 323–331 (2011). |
DOI: 10.1007/s11071-010-9730-6 |
30 | Marius-F. Danca, Approach of a Class of Discontinuous Systems of Fractional Order: Existence of Solutions, International Journal of Bifurcation and Chaos, 21(11), 3273–3276 (2011). |
DOI: 10.1142/S0218127411030519 |
29 | Marius-F. Danca, Numerical Approximation of a Class of Discontinuous Systems of Fractional Order, Nonlinear Dynamics, 66(1), 133-139 (2011). |
DOI: 10.1007/s11071-010-9915-z |
28 | Marius-F. Danca, Cristina Morel, Attractors synthesis of a class of networks. Dynamics of Continuous, Discrete & Impulsive Systems, Series B: Applications & Algorithms 18(5), 601-614 (2011). |
|
27 | Y. Mao, W.K.S. Tang and Marius-F. Danca, An Averaging Model for Chaotic System with Periodic Time-Varying Parameter, Applied Mathematics and Computation, 217(1), 355-362 (2010). |
DOI: 10.1016/j.amc.2010.05.068 |
26 | Marius-F. Danca, Qingyun Wang,
Synthesizing attractors of Hindmarsh-Rose neuronal systems, Nonlinear Dynamics, 62(1) 437-446 (2010). |
DOI: 10.1007/s11071-010-9730-6 |
25 | Marius-F. Danca, Attractors synthesis for a Lotka-Volterra-like system, Applied Mathematics and Computation, 216(7), 2107–2117 (2010). |
DOI: 10.1016/j.amc.2010.03.044 |
24 | Marius-F. Danca, Kai Diethlem,
Fractional-order attractors synthesis via parameter switchings, Communications in Nonlinear
Science and Numerical Simulations, 15(12), 3745–3753 (2011). |
DOI: 10.1016/j.cnsns.2010.01.011 |
23 | Marius-F. Danca, Chaotic behavior of a class of discontinuous dynamical
systems of fractional-order, Nonlinear Dynamics, 60(4), 525-534 (2010). |
DOI: 10.1007/s11071-009-9612-y |
22 | Marius-F. Danca, Finding stable attractors of a class of dissipative dynamical
systems by numerical parameter switching, Dynamical Systems, 25(2), 189–201
(2010). |
DOI: 10.1080/14689360903401278 |
21 | Marius-F. Danca, On the uniqueness of solutions to a class of discontinuous dynamical systems, Nonlinear Analysis, Real World Applications, 11 (3), 1402-1412 (2010). |
DOI: 10.1016/j.nonrwa.2009.02.024 |
20 | Marius-F. Danca, M. Romera, G. Pastor, Alternated Julia sets and connectivity properties, International Journal of Bifurcation and Chaos, 19(6) 2123–2129 (2009). |
DOI: 10.1142/S0218127409023962 |
19 | Marius-F. Danca, Random parameter-switching synthesis of a class of hyperbolic attractors, CHAOS, 18, 033111 (2008). |
DOI:10.1063/1.2965524 |
18 | Marius-F. Danca, Wallace K. S. Tang and Guanrong Chen, A switching scheme for synthesizing attractors of dissipative chaotic systems, Applied Mathematics and Computation, 201(1-2), 650–667 (2008). |
DOI: 10.1016/j.amc.2010.05.068 |
17 | Marius-F. Danca, Numerical approximations of a class of switch dynamical systems, Chaos, Solitons & Fractals, 38(1), 184–191 (2008). |
DOI: 10.1016/j.chaos.2006.11.003 |
16 | D. Lai, Marius-F. Danca, Fractal and Statistical Analysis on Digits of Irrational Numbers, Chaos, Solitons and Fractals, 36(2), 246-252 (2008). |
DOI: 10.1016/j.chaos.2006.06.029 |
15 | M. Romera, M. Small, Marius-F. Danca, Deterministic and random synthesis of discrete chaos, Applied Mathematics and Computation, 192(1), 283–297 (2007). |
DOI: 10.1016/j.amc.2007.02.142 |
14 | Marius-F. Danca, On a class of non-smooth dynamical systems: a sufficient condition for smooth vs nonsmooth solutions, Regular & Chaotic Dynamics 12 (1), 1-11 (2007). |
DOI: 10.1134/S1560354707010017 |
13 | Marius-F. Danca and Miguel Romera, Algorithm for Control and Anticontrol of Chaos in continuous-time Dynamical Systems, Dynamics of Continuous, Discrete & Impulsive Systems, B, 15(2), 155-164 (2008). |
|
12 | X. Luo, M. Small, Marius-F. Danca and G. Chen, On a dynamical system with multiple chaotic attractors, International Journal of Bifurcation and Chaos, 17(9), 3235 - 3251 (2007). |
DOI: 10.1142/S0218127407018993 |
11 | Marius-F. Danca, A multistep algorithm for ODEs, Dynamics of Continuous, Discrete & Impulsive Systems, B, 13(6), 803-821 (2006). |
|
10 | Marius-F. Danca, Controlling chaos in discontinuous dynamical systems, Chaos Solitons & Fractals, 22(3) 605-612 (2004). |
DOI: 10.1016/j.chaos.2004.02.032 |
9 | Marius-F. Danca and Guanrong Chen, Bifurcation and chaos in a complex model of dissipative medium, International Journal of Bifurcation and Chaos, 14(10), 3409–3447 (2004). |
DOI: 10.1142/S0218127404011430 |
8 | Marius-F. Danca, Chaotifying discontinuous dynamical systems via time-delay feedback algorithm, International Journal of Bifurcation and Chaos, 14(7), 2321-2339 (2004). |
DOI: 10.1142/S0218127404010801 |
7 | Marius-F. Danca, Synchronization of switch dynamical systems, International Journal Bifurcation & Chaos 12(8), 1813-1826 (2002). |
DOI: 10.1142/S0218127402005522 |
6 | Marius-F. Danca and S. Codreanu, On a possible approximation of discontinuous dynamical systems, Chaos, Solitons & Fractals 13(4), 681-691 (2002). |
DOI: 10.1016/S0960-0779(01)00002-9 |
5 | Marius-F. Danca, On a class of discontinuous dynamical systems, Miskolc Mathematical Notes, 2(2), 103-116 (2001). |
DOI: 10.18514/MMN.2001.41 |
4 | G. Pastor, M. Romera, A. B. Orue, A. Martin, Marius-F. Danca, F. Montoya, Harmonic Analysis in Discrete Dynamical Systems, International Journal of Modern Nonlinear Theory and Application 1(1), 14-31, 2012 |
DOI:10.4236/ijmnta.2012.11003 |
3 | S. Codreanu and Marius-F. Danca, Suppression of chaos in a one-dimensional mapping, Journal of Biological Physics 23(1), 1-9 (1997). |
DOI: 10.1023/A:1004910118920 |
2 | S. Codreanu and Marius-F. Danca, Control of chaos in a nonlinear prey-predator model, Polish Journal of Environmental Studies 6(1), 21-24 (1997). |
|
1 | Marius-F. Danca, S. Codreanu and B. Bako, Detailed analysis of a nonlinear prey-predator model, Journal of Biological Physics 23(1), 11-20 (1997). |
DOI: 10.1023/A:1004918920121 |
2. Papers published in peer-reviewed journals
1. G. Pastor, M. Romera, A. B. Orue, A. Martin, Marius-F. Danca, F. Montoya, Harmonic Analysis in Discrete Dynamical Systems, International Journal of Modern Nonlinear Theory and Application 1(1), 14-31, 2012, DOI:10.4236/ijmnta.2012.11003
3. Grants collaboration (2001-2020)
|
Project |
Ex. Year |
Director |
Remarks |
1 |
Russian Science Foundation for the support of leading departments, Grant No-096902/F |
2019-2020 |
Prof. Dr., Nikolay Kuznetsov |
• Art. G18, G19, G20 |
2 |
“Development of analytical and numerical methods for the study and synthesis of control systems”, |
2011, 2013, 2017 |
Nikolay Kuznetsov |
• Art. G12, G15, G16, G17 |
3 |
Grants VEGAMS 1/0071/14, VEGA-SAV 2/0029/13 and by the |
2011, 2013 |
Prof. dR. M. Fečkan –member |
• Art G13, G14 |
4 |
"Distributed pinning-control flocking algorithms for complex networked systems", |
2012-2014, 2015,2017 |
Prof. Dr. Eng. Guanrong Chen |
• Art. G1, G2; |
5 |
“Identificación y autenticación segura en comunicaciones electrónicas” |
2012-2014 |
Dr. Luis Hernández Encinas |
Art. G3, G4 |
6 |
“Identificación y Autentificación Seguras” |
2010 (Jan.-Dec.) |
Dr. Luis Hernández Encinas |
Art.G5, G4 |
7 |
“Seguridad y Confianza en la Sociedad de la Información” |
2007-2010 |
Dr. Luis Hernández Encinas |
Art. G6 |
8 |
“Nuevos Protocolos de Securidad y Algoritmos Criptográficospara la Protecciónde Servicios Telemáticos” |
2008 |
Prof. Dr. Fausto Montoya Vitini |
Art. G7 |
9 |
“Analiza unor fenomene neliniare prin metode analitice, experimentale si simulari numeric” |
2007-2010 |
Prof. Dr. Steliana Codreanu |
Art. G8 |
10 |
"Improving the synch,ronizability of complex networks" |
2007-2008 |
Prof. Dr. Eng. Guanrong Chen |
Art. G9 |
11 |
"Complex dynamical networks: modeling, control and synchrorization" |
2005-2007 |
Prof. Dr. Eng. Guanrong Chen |
Art. G10 |
12 |
“Characterization of Chaos and Synchronization in Biomedical Time Series with Novel Surrogate Techniques” |
2002-2005 |
Prof. Michal Small |
Art. G6, G10 |
13 |
“Evaluación de Protocolos y Algoritmos de Seguridad en Sistemas de Información” |
2005-2007 |
Prof. Dr. Fausto Montoya Vitini |
Art. G6 |
14 |
"Designing chaos generators via feedback control method for engineering applications," |
2001-2004 |
Prof. Dr. Eng. Guanrong Chen Director CCCN, City University of Hong Kong |
Art. G11 |
G1 Marius-F Danca, Roberto Garrappa, Wallace K. S. Tang, Guanrong Chen, Sustaining stable dynamics of a fractional-order chaotic financial system by parameter switching, Computers and Mathematics with Applications,66(5), 702–716, 2013.
G2 Marius-F Danca, W.K.S. Tang, Q. Wang, G. Chen, Suppressing chaos in fractional-order systems by periodic perturbations on system variables, The European Physical Journal B, 86(3); Article number: 79, 2013.
G3 Marius-F. Danca, Paul Bourke, Miguel Romera, Graphical exploration of the connectivity sets of alternated Julia sets; M, the set of disconnected alternated Julia sets, Nonlinear Dynamics, 73, 1155–1163, 2013.
G4 G. Pastor, M. Romera, A. B. Orue, A. Martin, Marius-F. Danca, F. Montoya, Harmonic Analysis in Discrete Dynamical Systems, International Journal of Modern Nonlinear Theory and Application 1(1), 14-31, 2012.
G5 G. Pastor, M. Romera, A. Orue, A. Martin, Marius-F. Danca and F. Montoya, Calculation of the structure of a shrub in the Mandelbrot set, Discrete Dynamics in Nature and Society, 2011, 1-23, 2011.
G6 M. Romera, M. Small, Marius-F. Danca, Deterministic and random synthesis of discrete chaos, Applied Mathematics and Computation, 192(1), 283–297, 2007.
G7 Marius-F. Danca, M. Romera, G. Pastor, Alternated Julia sets and connectivity properties, International Journal of Bifurcation and Chaos, 19(6) 2123–2129, 2009.
G8 Marius-F. Danca, Steliana Codreanu, Modeling numerically the Rikitake's attractors by parameter switching, Journal of the Franklin Institute, 349 (3) 861-878 2012.
G9 Marius-F. Danca, Wallace K. S. Tang and Guanrong Chen, A switching scheme for synthesizing attractors of dissipative chaotic systems, Applied Mathematics and Computation, 201(1-2), 650–667, 2008.
G10 4.1.37 X. Luo, M. Small, Marius-F. Danca and G. Chen, On a dynamical system with multiple chaotic attractors, International Journal of Bifurcation and Chaos, 17(9), 3235 - 3251, 2007.
G11 Marius-F. Danca and Guanrong Chen, Bifurcation and chaos in a complex model of dissipative medium, International Journal of Bifurcation and Chaos, 14(10), 3409–3447, 2004.
G12 Marius-F. Danca, Michal Fečkan, Nikolay Kuznetsov, Guanrong Chen, Looking more closely to the Rabinovich-Fabrikant system, International Journal of Bifurcation and Chaos, 26(2), 1650038 (2016).
G13 Marius-F. Danca, Michal Fečkan, Miguel Romera, Generalized Form of Parrondo' s Paradoxical Game with Applications to Chaos Control, International Journal of Bifurcation and Chaos, 24(01), 1450008 (2014).
G14 Marius-F. Danca, Michal Fečkan, Note on a Parameter Switching Method for Nonlinear ODES, Mathematica Slovaca, accepted, 2014.
G 15 Marius-F. Danca, Nikolay Kuznetsov, Guanrong Chen, Fractional-order PWC systems without zero Lyapunov exponents, Nonlinear Dynamics, accepted (2018).
G16 Marius-F. Danca, Nikolay Kuznetsov, Guanrong Chen, Approximating hidden chaotic attractors via parameter switching, CHAOS, 28, 013127 (2018).
G17 Marius-F. Danca, M. Feckan, Nikolay Kuznetsov, Guanrong Chen, Complex dynamics, hidden attractors and continuous approximation of a fractional-order hyperchaotic PWC system, Nonlinear Dynamics, accepted (2017).
G18 Marius.-F. Danca, Michal Feckan, Nikolay Kuznetsov, Chaos control in the fractional order logistic map via impulses, Nonlinear Dynamics, 98,(2), 1219–1230 (2019).
G19 Marius.-F. Danca, Michal Feckan, Nikolay Kuznetsov, Guanrong Chen, Rich dynamics and anticontrol of extinction in a prey-predator system, Nonlinear Dynamics, 98, (2), 1421–1445, (2019).
G20 Marius.-F. Danca, Paul Bourke, Nikolay Kuznetsov, Graphical structure of attraction basins of hidden attractors: the Rabinovich-Fabrikant system, International Journal of Bifurcation and Chaos, 29(01) 1930001 (2019).
4. Articole publicate în reviste cotate CNCSIS B+ (Romanian scientific journals)
5. Articole publicate în reviste cotate CNCSIS B (Romanian scientific journals)