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In this paper we show that a generalized form of Parrondo’s paradoxical game can be applied
to discrete systems, working out the logistic map as a concrete example, to generate stable
orbits. Written in Parrondos’ terms, this reads: chaos1 + chaos2 + ...+ chaosN = order, where
chaosi, i = 1, 2, ..., N , are denoted the chaotic behaviors generated by N values of the parameter
control, and by order one understands some stable behavior. The numerical results are sustained
by quantitative dynamics generated by Parrondo’s game. The implementation of the generalized
Parrondo’s game is realized here via the parameter switching (PS) algorithm for continuous-time
systems [Danca, 2013] adapted to the logistic map. Some related results for more general maps
on averaging, which represent discrete analogies of the PS method for ODE, are also presented
and discussed.
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1. Introduction

Named after the Spanish physicist J. M. R. Parrondo in 1996, Parrondo’s paradox affirms that two losing
games together can be set up to give a winning scenario [Harmer & Abbott, 1999a], [Harmer & Abbott,
1999b]. Parrondo showed that alternating deterministically (or even randomly) two losing gains, one can
obtain a positive gain, i.e.: “losing + losing = winning”.

This apparent contradiction is known now as Parrondo’s paradox, becoming an active area of research in
such as discrete-time ratchets [Amengual et al., 2004], minimal Brownian ratchet [Lee et al., 2003], game
theory in the sense of Blackwell [Blackwell & Girshick, 1954], molecular transport [Heath et al., 2002],
biology [Danca & Lai, 2012], and so on. For example, the sacrifice of some chess pieces can lead to winning
a game, therefore there are suggestions that Parrondos game could offer a possibility to make money by
investing into losing stocks. Even more, there are theories which affirm that this kind of mechanisms could
explain the origin of life [Abbot, 2010].

Zeilberger, said on Response to the Award of the 1998 Steele Prize for Seminal Contributions to
Research: “Combining different and sometimes opposite approaches and viewpoints will lead to revolutions.
So the moral is: Don’t look down on any activity as inferior, because two ugly parents can have beautiful
children”.

Since then, a huge number of scientific papers have been published and, despite the fact that not all
scientists agree with the principle of Parrondo’s paradox ([e.g. Iyengar & Kohli, 2003]), alternations like
losing–wining, weakness–strength, order–chaos and so on, can be found in many mathematical systems,
control theory, physics, biology, quantum systems, and so on, where combined processes may lead to
counterintuitive dynamics. Moreover, it has been found that this apparently trivial phenomenon is typical
not only in computational experiments but also in nature: there are many interactions which are due to
accidental or intentional switches of some parameters characterizing the underlying systems.

In this paper, we show that via the numerical parameter switching (PS) algorithm for continuous-time
systems [Danca, 2013], a generalization of the Parrondo’s game can be implemented for the logistic map
to obtain stable orbits. PS algorithm allows to direct trajectories of some considered continuous nonlinear
system, to wherever one wants within a targeted attractor (see also [Danca, 2013]).

The paper is organized as follows: Section 2 describes the PS algorithm for continuous systems reveling
his interpretation as a generalization of the Parrondo’s game. Section 3 introduces the PS algorithm for
the logistic map and general discrete systems. In Section 4, the generalization of the Parrondo’s game is
applied via the PS algorithm to the logistic map, to obtain stable orbits. The Conclusion Section closes
this paper and the Appendix contains the proof of one result for discrete maps presented in Section 3.

2. PS algorithm as generalization of the Parrondo’s game

Let us consider the following class of continuous systems modeled by the initial value problem:

f(x(t)) = f(x(t)) + pAx(t), x(0) = x0, t ∈ I = [0,∞), (1)

with f : Rn → Rn a nonlinear (at least) continuous vector valued function, x0 ∈ Rn, A a square real
matrix, and p ∈ R the control parameter.

The class of the systems modeled by (1) comprises systems such as Lorenz, Chen, Chua, Rössler and
many other known chaotic systems.

To construct the PS algorithm, a set of parameter values PN = {p1, p2, ..., pN} is necessary, where
pi ∈ R, i = 1, 2, ..., N , for N ≥ 2, have “weights” mi, with mi being some positive integers and, also, we
need a numerical method for ODEs with the single fixed step size h to integrate the system.

With these ingredients, while the initial value problem is numerically integrated, parameter p is
switched within PN in the following manner: for the first m1 integration steps, p = p1, for the next
m2 steps, p = p2, and so on, until the last mN steps, when p = pN , after which the algorithm repeats on
the next subintervals, until I is covered.

Symbolically, once N , PN and the weights mi, i = 1, 2, ..., N , together with the step size h are set, PS
algorithm will be denoted as follows:
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[m1p1,m2p2, ...,mNpN ]. (2)

For example, [3p1, 2p2] means that while the problem is numerical integrated, the first 3 integration
steps p = p1, then for the next two steps p = p2, after which, again, for three times with p = p1, then two
times p = p2, and so on.

In this way, once the scheme (2) is applied, the “switched” solution, obtained with the PS algorithm,
will converge to the “averaged” solution obtained from the following “averaged equation”:

ẋ(t) = g(x(t)) + p∗Ax(t), (3)

where the “averaged” value p∗ is given by

p∗ =

∑N
i=1mipi∑N
i=1mi

. (4)

Two different proofs of the convergence of the PS algorithm are presented in [Danca, 2013] and [Mao
et al., 2010], respectively.

PS is useful when we want to obtain the numerical approximation of some attractor, whose underlying
parameter value, for some reasons, cannot be set or attained. Then, by choosing PN and mi, so that
the value p∗ obtained via (4) equals the searched value and by applying the PS algorithm, one obtains a
solution which finally leads to the targeted attractor, corresponding to p∗.

For example, let us consider the Chen system [Chen & Ueta, 1999]

ẋ1 = a(x2 − x1),
ẋ2 = (p− a)x1 − x1x3 + px2,
ẋ3 = x1x2 − bx3,

(6)

where a = 35 and b = 3, while the control parameter is chosen to be p, with

f(x) =

 a(x2 − x1)
−ax1 − x1x3
x1x2 − bx3

 , A =

0 0 0
1 1 0
0 0 0

 .

If we intend to approximate, for example, the stable limit cycle corresponding to p = 26.09, we can
choose, the scheme (2) with N = 2: [m1p1,m2p2], P2 = {25.75, 26.26} and m1 = 1, m2 = 2 which, via (4),
gives p∗ = (1× 25.75 + 2× 26.26)/(1 + 2) = 26.09. By applying the PS algorithm, the obtained attractor,
denoted by A∗ (plotted in red in Fig. 1), approximates the averaged attractor (blue), denoted by Ap∗ (the
beginning transients have been neglected). The attractors corresponding to p1 and p2 are chaotic and are
denoted by A1 and A2 (Fig. 1 top)1, respectively.

Obviously, there are several ways to obtain the same attractor using the PS algorithm. For example,
the same stable attractor approximated above, can be obtained by switching N = 3 parameter values, with
P3 = {24.75, 25.8, 27.08} using the scheme [2p1, 1p2, 3p3]. Again, the relation (4) leads to p∗ = 26.09.

Other examples, for continuous, discontinuous systems of integer, and fractional-order systems, can be
found in [Danca et al., 2012].

Remark 2.1.

(i) The simplicity of the PS algorithm, which allows the approximation of any solution of (1), resides in
the linear dependence on p (The term pAx(t)).

1The numerical method utilized here is the standard RK with step size h = 0.001.
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(ii) The PS algorithm can be considered as easy to implement a chaos control-like algorithm, in the following
sense: suppose that one intends to obtain a stable limit cycle which corresponds to some p∗, but due to
some reasons this value cannot be set in the considered problem. Then, by choosing an adequate scheme
(2) for PS such that the right-hand side of (4) gives the desired value p∗, the PS algorithm will approximate
the desired stable cycle. By its nature, the PS algorithm can also be used as an anticontrol-like method, if
the attractor we want to approximate, corresponding to p∗, is chaotic (see [Danca et al., 2012]).

Hereafter, in this paper, by a little abuse of the notions of chaos control and anticontrol, these concepts
will be used when stable or chaotic orbits, respectively, are obtained with the PS algorithm.

An interesting fact is that a stable or chaotic attractor can be approximated with the PS algorithm,
whatever the behavior of the considered attractors (corresponding to pi) is. This property helps us to
implement Parrondo’s game.

Let us suppose that we want to approximate with the PS algorithm some stable limit cycle, using the
simplest scheme [1p1, 1p2], by p1, p2 corresponding to chaotic attractors. Then, if we denote the chaotic
motions corresponding to p1,2 with chaos1,2 and, the obtained stable behavior by order, then the PS
algorithm reveals Parrondo’s paradoxical game in the following form: chaos1 + chaos2 = order (i.e. chaos
control).

Moreover, the PS algorithm can be considered as a generalization of Parrondo’s game, since the scheme
(2) can be considered for N > 2 values of pi, i = 1, 2, ..., N , corresponding to chaotic motions:

chaos1 + chaos2 + ...+ chaosN = order.

If p1,2 correspond to stable motions, and the obtained behavior is chaotic, then the PS algorithm leads
to the following variant of Parrondo’s game: order1 + order2 = chaos (i.e. anticontrol).

Remark 2.2. The weights mi can be omitted since mi × chaosi, corresponding to the term mipi, can be
viewed as (another) chaotic motion - - - an absorption like property.

For the case of N = 2, there are the possibilities presented in Table 1, where only the first two cases
present the paradoxical character of Parrondo’s game.

Table 1. Possible results with PS algorithm for N = 2.

Control Observations

chaos1 + chaos2 = order Chaos control Parrondo’s game

order1 + order2 = chaos Anticontrol Parrondo’s game

order1 + chaos = order2 Chaos control -

order + chaos1 = chaos2 Anticontrol -

order1 + order2 = order3 Chaos control -

chaos1 + chaos2 = chaos3 Anticontrol -

Similarly, one can imagine the same possibilities for the general case of N > 2.

3. PS algorithm applied to maps

In this section, some quantitative aspects of Parrondo’s game are analyzed.
While for continuous systems modeled by (1), by applying Parrondo’s game, the switched solution

obtained with the PS algorithm applied to (1) converges to its averaged solution obtained by integration
of (1) with p being replaced with p∗. However, for the discrete systems, things look different.
Let us consider the following discrete variant of the PS algorithm applied to (1)
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xk+1 = f(xk) + qkAxk, (5)

where, as stated in Section 2, pi ∈ PN with weights mi for i = 1, · · · , N , A ∈ L(Rn), f : Rn → Rn satisfies

|f(x1)− f(x2)| ≤ L|x1 − x2| ∀x1,2 ∈ Rn,

for some L > 0. Also, in order to implement the switching of the parameter qk with the PS algorithm, let
us consider {qk}k∈N as a sequence of T -periodic piecewise constant, given by qk = pi for k ∈ [Mi−1 + 1 +

nT,Mi + nT ], M0 = 0, Mi :=
∑i

j=1mj , 1 ≤ i ≤ N , n ∈ N, the period being T := MN . The partition

repeats periodically, covering the desired number of iterations in (5). For example, if we intend to apply
the scheme [2p1, 3p2], we have the partition [1, 2], [3, 5], [6, 7], [8, 10], ..., and for q: for k ∈ [1, 2]: q1 = p1,
q2 = p1, for k ∈ [3, 5]: q3 = p2, q4 = p2, q5 = p2, and so on.

Unfortunately, compared to the case of continuous time systems modeled by (1), here there is no any
relationship between the switched equation (5) and the averaged variant

xk+1 = f(xk) + p∗Axk,

with p∗ given, as in Section 2, by (4).
On the other hand, if one considers the following discrete version of the PS algorithm:

xk+1 = xk + h(f(xk) + qkAxk), (6)

whose averaged form is

x̄k+1 = x̄k + h(f(x̄k) + p∗Ax̄k), (7)

then there exists already an averaging theory for difference equations (see e.g. [Dumas et al , 2004]). It
allows us to introduce the following result which characterizes quantitatively the solutions of (6) and (7).

Theorem 1. If

pmax := max{|pj |, j = 1, · · · , N},

p̄max = max


∣∣∣∣∣∣

k∑
j=1

(qj − p∗)

∣∣∣∣∣∣ , k = 1, · · · , T

 ,

then

|xk − x̄k| ≤
(
|x1 − x̄1|+ hp̄max∥A∥(|x̄1|+ (N + h)|f(0)|)eN(L+|p∗|∥A∥)

)
× eN(L+pmax∥A∥), (8)

for any 1 ≤ k ≤ N
h + 1 and h a small positive real number.

See the proof in Appendix.
In order to implement Parrondo’s game to the logistic map f : [0, 1] → [0, 1], f(x) = px(1 − x),

p ∈ [0, 4], using the scheme (2), the following simplest form will be used:2

xk+1 = qkxk(1− xk), k = 0, 1, ... (9)

where, as defined above, qk = pi for k ∈ [Mi−1 + 1 + nT,Mi + nT ], 1 ≤ i ≤ N and n ∈ N. For example
the scheme [2p1, 1p2] means that, by iterating with PS algorithm, one obtains x1 = p1x0(1 − x0), x2 =
p1x1(1− x1), x3 = p2x2(1− x2), x4 = p1x3(1− x3), x5 = p1x4(1− x4),...

Consider now a sequence of logistic maps, fpn(x) := pnx(1− x) with pn ∈ (0, 4], n ≥ 0.3 Let fp∗(x) :=
p∗x(1 − x), p∗ being some value within (0, 4], p∗ ∈ (0, 4] and suppose that it has an exponentially stable

2In [Almeida et al , 2005] and [Fulai, 2012], particular forms of this kind of switching has been used to study behavior of the
alternating orbits of the more accessible quadratic real (Mandelbrot) map xk+1 = x2k + p, while in [Danca et al , 2009] the
switches have been utilized to study the connectivity of alternating Julia sets.
3pn are switched with the PS algorithm via qn as described above.
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orbit {x̄n}∞n=0, i.e. x̄n+1 = fp∗(x̄n), n ≥ 0, with
∏n

i=0 |f ′
p∗(x̄i)| ≤ Ke−αn for any n ≥ 0 and some positive

constants K,α. We intend to find conditions that fp∗ controls the local dynamics near x̄0 of the PS system
given by {fpn}∞n=0. This is described in the next result.

Theorem 2. Suppose the above assumptions hold. Set P ∗ := supi≥0 |pi − p∗|. Let r ≥ δ ≥ 0 satisfy

Kδ +
KP ∗eα

4(eα − 1)
+

Kp∗eα

eα − 1
r2 ≤ r. (10)

If |x0 − x̄0| ≤ δ, then |xn − x̄n| ≤ r for any n ≥ 0, where xn+1 = fpn(xn).

Proof. We have

|xn+1 − x̄n+1| = |fpn(xn)− fp∗(x̄n)| ≤ |fp∗(xn)− fp∗(x̄n)|+ |fpn(xn)− fp∗(xn)|

≤ |f ′
p∗(x̄n)||xn − x̄n|+ p∗(xn − x̄n)

2 +
|pn − p∗|

4
,

which implies

|xn − x̄n| ≤
n−1∏
i=0

|f ′
p∗(x̄i)||x0 − x̄0|+

n−1∑
k=0

n−1−k∏
i=0

|f ′
p∗(x̄i)|

(
p∗(xk − x̄k)

2 +
|pn − p∗|

4

)

≤ Ke−α(n−1)|x0 − x̄0|+
n−1∑
k=0

Ke−α(n−1−k)

(
p∗(xk − x̄k)

2 +
P ∗

4

)

≤ K|x0 − x̄0|+
KP ∗eα

4(eα − 1)
+Kp∗

n−1∑
k=0

e−α(n−1−k)(xk − x̄k)
2,

(11)

for n ≥ 1 and P ∗ := supi≥0 |pi − p∗|.
By assumption, |x0 − x̄0| ≤ δ ≤ r. Suppose |xk − x̄k| ≤ r for any 1 ≤ k ≤ n− 1. Then, (10) and (11)

give

|xn − x̄n| ≤ Kδ +
KP ∗eα

4(eα − 1)
+

Kp∗eα

eα − 1
r2 ≤ r.

So, the mathematical induction principle completes the proof. �

Note that inequality (10) has a solution r = 0 for δ = 0 and P ∗ = 0. As δ or P ∗ is increasing, r is
also increasing, but there are upper bounds for δ and P ∗, when (10) has no solution. We do not analyze
this since it is elementary but awkward in notations. We note that the above arguments work also on
finite-length orbit {x̄n}mn=0 when

∏n
i=0 |f ′

p∗(x̄i)| ≤ Ke−αn for any m ≥ n ≥ 0 and some positive constants
K,α. Then of course the statement of Theorem 2 is reduced on this finite orbit.

Remark 3.1.

(i) Theorems 2 and 1 show how the PS method acts differently for ODE and for maps. Accordingly, we
are entitled to state, for the first time to our knowledge, that by applying Parrondo’s game to the logistic
map, the obtained (ordered or chaotic) dynamic is not a typical behavior for the logistic map, but only a
close (similar) one.
(ii) It should be mentioned that this result can be directly extended to general maps, in higher dimensions.
Then, the stability of the orbit can be replaced by its hyperbolicity, i.e. by an exponential dichotomy of
the linearized equation. Moreover, we think that our result is also related to synchronization, since we try
to find a map which locally synchronizes the PS system.

4. Chaos control of the logistic map with Parrondo’s game

In this section, since the quantitative aspects of PS algorithm implementation have been explored in the
previous section, we shall see qualitatively, aided by extensive numerical computations, that by applying
Parrondo’s game (via the PS algorithm), chaos control can be achieved.
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To underline the stable character of the obtained orbits, bifurcation diagrams, time series, cobweb plots
and first return map are plotted. The cobweb plots are drawn, by connecting alternately with horizontal
and vertical lines the diagonal line and the N graphs corresponding to the considered N values.

Throughout the rest of this paper, all the orbits are plotted after the first thousand points have been
discarded, and the behavior corresponding to the reached orbit with the PS algorithm will be denoted by
order∗, or chaos∗. The orbits corresponding to pi will be denoted by {xi}.

In order to better understand the way in which the PS algorithm is used to implement Parrondo’s
game, let us first consider the simplest case of N = 2 with the scheme [1p1, 1p2].

Since chaos control expressed in terms of Parrondo’s game envisages the underlying behaviors of the
orbits {xi}, i = 1, 2, to be chaotic, we will focus mostly on those values of p1 and p2 which generate chaotic
orbits. In order to facilitate their choice, for the particular case of N = 2, switched bifurcation diagrams
will be used, which can be visualized by applying the PS algorithm for all p1, and p2, within the chaotic
range p ∈ [3.6, 4], where chaotic windows prevail (see Fig. 2 where, for the sake of the image quality, only
nine values of p1 have been considered).

One of these switched bifurcation diagrams, corresponding to p1 = 3.815, is plotted in Fig. 3. There,
one can see that by applying the PS algorithm using the scheme [1p1, 1p2] with p2 = 3.857, the result is a
stable orbit as plotted in Fig. 4, where it is indicated by the dotted red line in the bifurcation diagram. In
this case, we have chaos1 + chaos2 = order∗, i.e. we have achieved chaos control with Parrondo’s game.

We recall that this bifurcation diagram (Fig. 3) is obtained with the PS algorithm but not in the
classical way, where the orbits {x1} and {x2}, corresponding to p = p2 = 3.857, are chaotic.

A more helpful tool to identify the points (p1, p2), where Parrondo’s game applies, is to plot the
“Parrondo’s basins”, where the points verify, under the PS algorithm, one of the conditions: chaos1 +
chaos2 = order (chaos control), or order1 + order2 = chaos (anticontrol).

Because we are more interested in chaos control with the Parrondo’s game (see Table 1), the latice
of points (p1, p2) we have chosen is [3.6, 4] × [3.6, 4] (Fig. 5), where chaos prevails. Therefore, the points
(p1, p2), whose components p1,2 generate chaotic orbits by iterating the logistic map in this latice, are the
majority and are plotted in green. The rest of the points (p1, p2) which, separately, generate stable orbits
by iterating the logistic map, are plotted in white.

The points (p1, p2), which were obtained via the PS algorithm, generate stable orbits (i.e. chaos control)
and are plotted in red.

The distinction of stable\chaotic obits has been determined by calculating the Lyapunov exponent.
As can be seen, there are red-green points, where the red points are plotted over the green points, and

red-white points, where the red points are plotted over the white points.
“Parrondo’s chaos control basins” obtained by using the PS algorithm within this latice, are the red-

green points .
As can be seen from the numerically obtained results shown in Fig. 5 (see also the detailed D presented

in Fig. 6), Parrondo’s basins verify the following result.

Property 3. The sets of points (p1, p2) verifying Parrondo’s paradox have the following properties:

(a) they form a fractal structure;
(b) they form connect regions.

The same properties are suspected to hold for the general case of N > 2.
Now, we can see that the scheme used above, [1p1, 1p2] with p1 = 3.815 and p2 = 3.857 (see the

corresponding point M1(p1, p2) in Fig. 5), leads to Parrondo’s game and it belongs to a red-green basin,
i.e. belongs to Parrondo’s chaos control basin.

If one chooses a point within a (rectangular) red-white region (e.g. the point M2(3.84, 3.844)), a stable
cycle is obtained with the PS algorithm (due to the red region), but the underlying values p1 and p2, by
iterating the logistic map, generate stable orbits (due to the white region). The stable orbit is plotted
in Fig. 7 a, where, because the orbits are almost identic, they are slightly translated. Now, we have
order1 + order2 = order∗, which means that we have achieved chaos control (in the sense defined above),
but not Parrondo’s game.
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A stable orbit with a higher period obtained with Parrondo’s game is plotted in Fig. 8, which was
obtained with p1 = 3.6075 and p2 = 3.7. The corresponding point, M3, belongs to a red-green region (Fig.
5).

As expected, Parrondo’s game can be used to model anticontrol too. For example, for the scheme
[1p1, 1p2] with p1 = 3.74, p2 = 3.845, chosen in some white and exterior of red regions (point M4 in Fig.
5), the obtained chaotic orbit is plotted in Fig. 9, emphasizing the paradoxical character of the game in
this case. 4

An example of anticontrol, where Parrondo’s game does not apply, is presented in Fig. 10, which
corresponds to the point M5(3.8, 3.7) situated in a green region.

Remark 4.1. As can be seen, there exists a positive probability to realize chaos control by using the (gener-
alized) Parrondo’s game. For example, for the considered latice scanned with step size 0.001 (which gives
16× 104 points), the chance to find a pair (p1, p2) generating a stable cycle via Parrondo’s game, is about
15%. This property is favored by the fractal structure of the latice (Property 3 (a)), which can be seen in
the enlarged detailed D in Fig. 6. Therefore, almost everywhere, there are points (p1, p2) generating stable
orbits with the PS algorithm. Moreover, due to the connectivity of Parrondo’s basins (Property 3 (2)),
near every point verifying Parrondo’s game, there are infinitely many other points verifying that property.

Not only the “classical” form of Parrondo’s game (implemented with the scheme [1p1, 1p2]) can
be used to obtain stable orbits. For example, for N = 6, with mi = 1, i = 1, ..., 6, and with P6 =
{3.6, 3.7, 3.75, 3.8, 3.86, 3.9}, one obtains a stable 6-periodic orbit (Fig. 11a). Therefore, in this case, we
have a generalized Parrondo’s game with

∑6
i=1 chaosi = order∗, since all the orbits entering into these

relations are chaotic. If we change the weights mi, m1 = 3,m2 = 1,m3 = 5,m4 = 2,m5 = 1,m6 = 10,
and maintain the P6 set as before, or we use the set P6 = {3.4, 2.35, 3.5, 2.8, 1.9, 0.85} with m1 = 10,m2 =
1,m3 = 5,m4 = 10,m5 = 1,m6 = 10, we obtain the periodic bursts shown in Fig. 11b and 11c, respectively.
In this case, we do not have Parrondo’s game, since few of the orbits corresponding to pi are stable but
most others are chaotic.

Conclusion

In this paper, we have shown that Parrondo’s game can be implemented for the logistic map, via the
PS algorithm for continuous-time systems, to obtain stable orbits. As stated by Theorem 2, the obtained
switching orbits are close to, but different from the generic orbits of the logistic map.

Numerically, we found that there exists a positive probability to obtain stable orbits with Parrondo’s
game and that the set of points (p1, p2), which lead to chaos control with Parrondo’s game, have a fractal
structure.

Since several parameter values (N > 2) can be used, the PS algorithm can be considered as a way to
obtain a generalized variant of Parrondo’s game chaos1 + chaos2 + ...+ chaosN = order.

A generalized Parrondo’s game for anticontrol can also be implemented, if the underlying values gen-
erate stable orbits and the obtained orbit is chaotic: order1 + order2 + ...+ orderN = chaos.

We also show that the PS algorithm can be used for some other classes of general discrete systems.

Appendix

Proof. [Proof of Theorem 1] Let 1 ≤ k ≤ N
h + 1. From (7), we have

|x̄k+1| ≤ (1 + h(L+ |p∗|∥A∥))|x̄k|+ h|f(0)|,

4The “Parrondo’s anticontrol basins” are situated within the white regions, but they have not been plotted due to the scope
of this work and in order not to overload the image.



October 1, 2013 9:31 game˙revised

9

which implies

|x̄k+1| ≤ |x1|+ h(L+ |p∗|∥A∥)
k∑

j=1

|x̄j |+ kh|f(0)|

≤ |x̄1|+ (N + h)|f(0)|+ h(L+ |p∗|∥A∥)
k∑

j=1

|x̄j |.

Then applying discrete Gronwall inequality [Elaydi, 2005], we obtain

|x̄k| ≤ (|x̄1|+ (N + h)|f(0)|)e(k−1)h(L+|p∗|∥A∥)

≤ (|x̄1|+ (N + h)|f(0)|)eN(L+|p∗|∥A∥).
(12)

Next, (6), (7) and (12) give

|xk+1 − x̄k+1| ≤ |x1 − x̄1|+ h

k∑
j=1

L|xj − x̄j |

+h|
k∑

j=1

(qj − p∗)|∥A∥|x̄j |+ h
k∑

j=1

|qj |∥A∥|xj − x̄j |

≤ |x1 − x̄1|+ hp̄max∥A∥(|x̄1|+ (N + h)|f(0)|)eN(L+|p∗|∥A∥)

+h(L+ pmax∥A∥)
k∑

j=0

|xj − x̄j |,

(13)

since k →
∑k

j=1(qj − p∗) is T -periodic on N. Then, again, applying discrete Gronwall inequality to (13),
we obtain

|xk − x̄k| ≤
(
|x1 − x̄1|+ hp̄max∥A∥(|x̄1|+ (N + h)|f(0)|)eN(L+|p∗|∥A∥)

)
×eh(k−1)(L+pmax∥A∥),

which implies (8). The proof is completed. �

Remark 4.2.

(i) We derive from the above proof that

|xk − x̄k| ≤ (|x1 − x̄1|+ hp̄max∥A∥ max
1≤j≤k

|x̄j |)e(k−1)h(L+pmax∥A∥)
(14)

for any k ∈ N.

(ii) We can consider, in the above discussion, any globally Lipschitz map A : Rn → Rn.
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Fig. 1. Stable limit cycle of the Chen system (6), corresponding to p = 26.09, and approximated by the PS algorithm with
the scheme [1p1, 2p2], p1 = 25.75 and p2 = 26.26. Up: the chaotic attractors corresponding to p1 and p2. Down: the switched
attractor A∗ (red) and averaged attractor Ap∗ (blue).

Fig. 2. Switched bifurcation diagram for p1,2 ∈ [3.6, 4]. For the sake of clarity, only few diagrams, corresponding to nine
values of p1, have been plotted.
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Fig. 3. A switched bifurcation diagram, corresponding to p1 = 3.815. This diagram reveals the fact that for p1 = 3.815 and
p2 = 3.857, the obtained switcing orbit is stable (even p1,2 generate chaotic orbits).

Fig. 4. Stable orbit obtained with Parrondo’s game: Chaos1 + Chaos2 = Order∗, via the scheme [1p1, 1p2] with p1 = 3.815
and p2 = 3.857 (see the corresponding point M1 in the red-green region, Fig. 5). (a) Time series of the orbits {x1} and {x2},
corresponding to p1 and p2. (b) Cobweb plot of the switching orbit. (c) Time series of the switching orbit. (d) First return
map of the switching orbit.
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Fig. 5. The latice of points (p1, p2) ∈ [3.6, 4]× [3.6, 4], showing the (red-green) points (p1, p2), which lead to Parrondo’s game.

Fig. 6. Enlarged view of the detailed D in the latice in Fig. 5.
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Fig. 7. Stable orbit obtained with the scheme [1p1, 1p2] with p1 = 3.84 and p2 = 3.844 (see the corresponding point M2

in the red-white region, Fig. 5). Now, Order1 + Order2 = Order∗ and Parrondo’s game do not apply in this case. (a) Time
series of the orbits {x1} and {x2}, corresponding to p1 and p2. (b) Cobweb plot of the switching orbit. (c) Time series of the
switching orbit. (d) First return map of the switching orbit.
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Fig. 8. Higher periodic stable orbit obtained by Parrondo’s game: Chaos1 + Chaos2 = Order∗, using the scheme [1p1, 1p2],
with p1 = 3.6075 and p2 = 3.7 (see the corresponding point M3 in red-green region, Fig. 5). (a) Time series of the orbits {x1}
and {x2}, corresponding to p1 and p2. (b) Cobweb plot of the switching orbit. (c) Time series of the switching orbit. (d) First
return map of the switching orbit.
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Fig. 9. Chaotic orbit obtained with Parrondo’s (anticontrol) game: Order1 +Order2 = Chaos∗, using the scheme [1p1, 1p2],
with p1 = 3.74, p2 = 3.845 (see the corresponding point M4 in white region, Fig. 5). (a) Time series of the orbits {x1} and
{x2}, corresponding to p1 and p2. (b) Cobweb plot of the switching orbit. (c) Time series of the switching orbit. (d) First
return map of the switching orbit.
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Fig. 10. Chaotic orbit obtained by the scheme [1p1, 1p2] with p1 = 3.8 and p2 = 3.7 (see the corresponding point M5 in green
region Fig. 5). Now, Chaos1 +Chaos2 = Chaos∗ and Parrondo’s game do not apply in this case. (a) Time series of the orbits
{x1} and {x2}, corresponding to p1 and p2. (b) Cobweb plot of the switching orbit. (c) Time series of the switching orbit. (d)
First return map of the switching orbit.
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Fig. 11. Stable orbits obtained with the generalized Parrondo’s game for N = 6 using scheme [m1p1,m2p2, ...,m6p6]

(
∑6

i=1 chaosi = order∗). (a) P6 = {3.6, 3.7, 3.75, 3.8, 3.86, 3.9} and mi = 1, i = 1, ..., 6. (b) Same set P6 =
{3.6, 3.7, 3.75, 3.8, 3.86, 3.9} with m1 = 3,m2 = 1,m3 = 5,m4 = 2,m5 = 1,m6 = 10. (c) P6 = {3.4, 2.35, 3.5, 2.8, 1.9, 0.85}
and m1 = 10,m2 = 1,m3 = 5,m4 = 10,m5 = 1,m6 = 10.


