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ABSTRACT
In this paper, solutions of fractional difference equations with Caputo-type delta-
based fractional difference operator of order µ ∼ 1 are compared with solutions of
corresponding difference equations with usual first-order forward difference. To de-
rive convergence results, Gronwall type inequalities are proved for suitable fractional
sum inequalities of general noninteger order. An illustrative example is also given.
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1. Introduction

Beginnings of discrete fractional calculus are due to Miller and Ross [10]. Later Atici
and Eloe proved further properties of the fractional sum operator in [3]. Caputo like
fractional difference was established in [1] (cf. also [2]).

Recently in [8], convergence was investigated of solutions of fractional differential
equations with Caputo fractional derivative of order close to 1 to solutions of corre-
sponding differential equations of the first order as the fractional order tends to 1.
It was shown that the corresponding integer-order equation substantially depends on
the side of the one-sided limit. In this paper, we compare a solution of a fractional
difference equation with Caputo like delta-based fractional difference of order µ close
to 1 with a solution of a corresponding difference equation of order 1. So, the present
paper can be considered as a discrete counterpart to [8].

In the following section, we conclude preliminary results needed for main sections.
There are also proved Gronwall type inequalities for fractional sum inequalities of any
non-integer order. Sections 3 and 4 are devoted to cases µ → 1− and µ → 1+, respec-
tively. A simple example is given at the end of Section 4 to illustrate the convergence
results.

Here and after, Na, a ∈ R denotes the shifted set of positive integers, i.e., Na =
{a, a + 1, a + 2, . . . }. We shortly denote N := N1. We also use Zb

a := {a, a + 1, . . . , b}
for b− a ∈ N0, Zb

a = ∅ if a > b, and R+ := [0,∞).



Throughout the paper, we assume the property of empty sum and empty product,
i.e.,

b∑
k=a

f(k) = 0,

b∏
k=a

f(k) = 1

if a > b.

2. Preliminaries

First we recall some definitions from the theory of fractional difference calculus. Basic
definitions are due to [1, 10]. For properties of fractional difference operator see also
[3, 4].

Definition 2.1. Let ν ∈ R. Factorial function is defined as

t(ν) =

{
0, t+ 1− ν ∈ {. . . ,−2,−1, 0},
Γ(t+1)

Γ(t+1−ν) , otherwise

where Γ is the Euler gamma function.

Definition 2.2. Let a ∈ R, ν > 0. The ν-th fractional sum of function f defined on
Na is given by

∆−νf(k) := (∆−ν
a f)(k) =

1

Γ(ν)

k−ν∑
j=a

(k − σ(j))(ν−1)f(j)

for any k ∈ Na+ν .

Definition 2.3. Let a ∈ R, µ > 0, m− 1 < µ < m for some m ∈ N, ν := m− µ and
function f be defined on Na. The µ-th fractional Caputo like difference of f with the
lower limit at a is defined as

∆µ
∗f(k) := (C∆µ

af)(k) = (∆−ν(∆mf))(k) =
1

Γ(ν)

k−ν∑
j=a

(k − σ(j))(ν−1)(∆mf)(j)

for any k ∈ Na+ν . Here ∆m is the m-th forward difference operator,

(∆mf)(k) =

m∑
j=0

(
m

j

)
(−1)m−jf(k + j).

For the simplicity, in the rest of the paper, we consider the fractional difference with
the lower limit at 0.

We shall need the following estimations of a ratio of gamma functions (see also [11]).
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Lemma 2.4 (see [12]). For any 0 < s < 1 and x > 0,

x1−s ≤ Γ(x+ 1)

Γ(x+ s)
≤ (x+ s)1−s.

Lemma 2.5 (see [9]). For any 0 < s < 1 and x > 0,

Γ(x+ s)

Γ(x+ 1)
<
(
x+

s

2

)s−1
.

Next we present two Gronwall type inequalities for fractional sums.

Lemma 2.6. Let 0 < µ < 1, z, a : ZK
0 → R+ for some K ∈ N ∪ {∞} and a be

nondecreasing. If there is L > 0 such that

z(k) ≤ a(k) +
L

Γ(µ)

k−1∑
j=0

(k − σ(j + 1− µ))(µ−1)z(j), k ∈ ZK
0

then

z(k) ≤ a(k)Eµ

(
Lkµ

µ+ µ2

)
, k ∈ ZK

0 ,

where Eµ(w) =
∑∞

j=0
wk

Γ(jµ+1) is the Mittag-Leffler function.

Proof. Let us extend functions z and a to [0, T ), T := K + 1 by z(t) = z(⌊t⌋) and
a(t) = a(⌊t⌋) where ⌊·⌋ is the floor function giving the greatest lower integer. Let us
fix arbitrary t ∈ [0, T ). Then

z(t) ≤ a(t) +
L

Γ(µ)

k−1∑
j=0

(k − σ(j + 1− µ))(µ−1)z(j)

= a(t) +
L

Γ(µ)

k−1∑
j=0

∫ j+1

j
(k − σ(j + 1− µ))(µ−1)z(s)ds

with k = ⌊t⌋. Now using the definition of the factorial function and Lemma 2.4, we
derive for j ∈ Zk−1

0 ,

(k − σ(j + 1− µ))(µ−1) =
Γ(k − j − 1 + µ)

Γ(k − j)

=
k − j

k − j − 1 + µ

k − j + 1

k − j + µ

Γ(k − j + 1 + µ)

Γ(k − j + 2)

=

(
1 +

1− µ

k − j − 1 + µ

)(
1 +

1− µ

k − j + µ

)
Γ(k − j + 1 + µ)

Γ(k − j + 2)

≤
(
1 +

1− µ

µ

)(
1 +

1− µ

1 + µ

)
(k − j + 1)µ−1

=
2

µ(1 + µ)
(k − j + 1)µ−1.
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Hence,

z(t) ≤ a(t) +
2L

Γ(2 + µ)

k−1∑
j=0

∫ j+1

j
(k − j + 1)µ−1z(s)ds

≤ a(t) +
2L

Γ(2 + µ)

k−1∑
j=0

∫ j+1

j
(k − s+ 1)µ−1z(s)ds

= a(t) +
2L

Γ(2 + µ)

∫ k

0
(k − s+ 1)µ−1z(s)ds

≤ a(t) +
2L

Γ(2 + µ)

∫ t

0
(k − s+ 1)µ−1z(s)ds

≤ a(t) +
2L

Γ(2 + µ)

∫ t

0
(t− s)µ−1z(s)ds.

By the Henry–Gronwall inequality [13, Corollary 2] we get

z(t) ≤ a(t)Eµ

(
2Ltµ

µ+ µ2

)
for any t ∈ [0, T ). The statement is obtained by setting t = k.

Lemma 2.7. Let m − 1 < µ < m for some m ∈ N2, z, a : ZK
0 → R+ for some

K ∈ Nm ∪ {∞} and a be nondecreasing. If there is L > 0 such that

z(k) ≤ a(k) +
L

Γ(µ)

k−m∑
j=0

(k − σ(j +m− µ))(µ−1)z(j), k ∈ ZK
0

then

z(k) ≤ a(k)Eµ(Lk
µ), k ∈ ZK

0 .

Proof. Let µ ∈ (m− 1,m) be fixed for some m ∈ N2. The statement is proved as the
previous one using the following estimations:

(k − σ(j +m− µ))(µ−1) =
Γ(k − j −m+ µ)

Γ(k − j −m+ 1)

=
Γ(k − j − 2m+ µ+ 2)

Γ(k − j −m+ 1)

m−2∏
l=1

(k − j −m+ µ− l)

≤ (k − j −m+ 1)µ−m+1
m−2∏
l=1

(k − j −m+ µ− l)

≤ (k − j −m+ 1)µ−m+1
m−2∏
l=1

(k − j − l) ≤ (k − j − 1)µ−1
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for each fixed j ∈ Zk−m
0 , k ∈ ZK

0 , and

k−m∑
j=0

(k − σ(j +m− µ))(µ−1)z(j) =

k−m∑
j=0

∫ j+1

j
(k − σ(j +m− µ))(µ−1)z(s)ds

≤
k−m∑
j=0

∫ j+1

j
(k − j − 1)µ−1z(s)ds ≤

k−m∑
j=0

∫ j+1

j
(k − s)µ−1z(s)ds

=

∫ k−m+1

0
(k − s)µ−1z(s)ds ≤

∫ k−m+1

0
(t− s)µ−1z(s)ds ≤

∫ t

0
(t− s)µ−1z(s)ds

for any t ∈ [0, T ), T = K + 1, where z(s) = z(⌊s⌋), k = ⌊t⌋.

Usually, a fractional sum equation equivalent to an initial value problem for a frac-
tional difference equation of order µ > 0 is stated for µ ∈ (0, 1) (see e.g. [5, Lemma
2.4]). For the convenience of the reader, here we state the result for µ ∈ (1, 2).

Lemma 2.8. Let µ ∈ (1, 2), x0, x1 ∈ Rn and f : N0 × Rn → Rn be a given function.
Function x : N0 → Rn is a solution of

∆µ
∗x(k) = f(k + µ− 2, x(k + µ− 2)), k ∈ N2−µ,

x(0) = x0,

∆x(0) = x1

(1)

if and only if it satisfies

x(k) = x0 + kx1 +
1

Γ(µ)

k−2∑
j=0

(k − σ(j + 2− µ))(µ−1)f(j, x(j)) (2)

for each k ∈ N0 (assuming the empty sum property).

Proof. If x is a solution of (1), [1, Theorem 8] yields that x fulfills (2). Note that this
can be obtained directly by applying the operator ∆−µ

2−µ to the fractional difference
equation and then using the initial conditions.

Conversely, if x satisfies (2), then x(0) = x0, ∆x(0) = x(1)− x(0) = x1 and

x(k) = x0 + kx1 +
1

Γ(µ)

k−µ∑
j=2−µ

(k − σ(j))(µ−1)f(j + µ− 2, x(j + µ− 2))

for each k ∈ N2. On the other side, by [1, Theorem 8],

x(k) = x(0) + k∆x(0) +
1

Γ(µ)

k−µ∑
j=2−µ

(k − σ(j))(µ−1)∆µ
∗x(j)

5



for each k ∈ N2. Comparing these two equations, we get

1

Γ(µ)

k−µ∑
j=2−µ

(k − σ(j))(µ−1)[∆µ
∗x(j)− f(j + µ− 2, x(j + µ− 2))] = 0

for each k ∈ N2. Now, subsequently letting k = 2, 3, . . . we derive ∆µ
∗x(k) = f(k+µ−

2, x(k + µ− 2)) for each k ∈ N2−µ.

Next, we recall estimations of the Mittag-Leffler function for various values of the
parameter µ.

Lemma 2.9 (see [6, Lemma 2]). For all t ∈ R+, µ ∈ (0, 1), and κ > 0, it holds

1 ≤ Eµ(κt
µ) ≤ eκ

1
µ t

µ
.

Lemma 2.10 (see [8, Lemma 3.1]). For all t ∈ R+, µ ∈ (1, 4/3), and κ > 0, it holds

1 ≤ Eµ(κt
µ) ≤ eκ

1
µ t

µ
+

4
√
3 sin πµ

2

9µ
.

3. The case µ → 1−

Let us consider an initial value problem for fractional difference equation

∆µ
∗x(k) = f(k + µ− 1, x(k + µ− 1)), k ∈ N1−µ,

x(0) = x0
(3)

where ∆µ
∗ is the Caputo fractional difference of order µ ∈ (0, 1) with the lower limit

at zero and f : N0 × Rn → Rn is a given function, along with a difference equation

∆y(k) = f(k, y(k)), k ∈ N0,

y(0) = y0
(4)

for x0, y0 ∈ Rn. We suppose

(H) There are nonnegative constants M and L such that ∥f(k, x)∥ ≤ M and
∥f(k, x) − f(k, y)∥ ≤ L∥x − y∥ for each k ∈ N0 and all x, y ∈ Rn, where ∥ · ∥ is
a norm on Rn.

From [5, Lemma 2.4] we know that x(k) is a solution of (3) if and only if it satisfies

x(k) = x0 +
1

Γ(µ)

k−µ∑
j=1−µ

(k − σ(j))(µ−1)f(j + µ− 1, x(j + µ− 1))

= x0 +
1

Γ(µ)

k−1∑
j=0

(k − σ(j + 1− µ))(µ−1)f(j, x(j))
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for each k ∈ N0 (assuming the empty sum property). Moreover, y(k) solves (4) if and
only if

y(k) = y0 +

k−1∑
j=0

f(j, y(j)), k ∈ N0.

Hence, for each k ∈ N0,

∥x(k)− y(k)∥ ≤ ∥x0 − y0∥+

∥∥∥∥∥∥
k−1∑
j=0

(
(k − σ(j + 1− µ))(µ−1)

Γ(µ)
f(j, x(j))− f(j, y(j))

)∥∥∥∥∥∥
≤ ∥x0 − y0∥+

1

Γ(µ)

k−1∑
j=0

(k − σ(j + 1− µ))(µ−1)∥f(j, x(j))− f(j, y(j))∥

+

k−1∑
j=0

∣∣∣∣1− (k − σ(j + 1− µ))(µ−1)

Γ(µ)

∣∣∣∣ ∥f(j, y(j))∥
≤ ∥x0 − y0∥+

L

Γ(µ)

k−1∑
j=0

(k − σ(j + 1− µ))(µ−1)∥x(j)− y(j)∥

+M

k−1∑
j=0

∣∣∣∣1− (k − σ(j + 1− µ))(µ−1)

Γ(µ)

∣∣∣∣
= ∥x0 − y0∥+

L

Γ(µ)

k−1∑
j=0

(k − σ(j + 1− µ))(µ−1)∥x(j)− y(j)∥

+M

k−1∑
j=0

∣∣∣∣1− (j − σ(−µ))(µ−1)

Γ(µ)

∣∣∣∣ .
Applying Lemma 2.6 yields

∥x(k)− y(k)∥ ≤

∥x0 − y0∥+M

k−1∑
j=0

∣∣∣∣1− (j − σ(−µ))(µ−1)

Γ(µ)

∣∣∣∣
Eµ(L1k

µ)

for each k ∈ N0, where L1 =
2L

µ+µ2 . We continue with the case x0 = y0. Then we have

∥x(k)− y(k)∥ ≤ Mθµ(k), θµ(k) = Eµ(L1k
µ)

k−1∑
j=0

∣∣∣∣1− (j − σ(−µ))(µ−1)

Γ(µ)

∣∣∣∣ (5)

for each k ∈ N0. Clearly, θµ(0) = 0 for any µ ∈ (0, 1). From now on, we consider k ∈ N.
Let us investigate the sum in θµ: Clearly, the summand vanishes for j = 0. Moreover,

for j ∈ Zk−1
1 , k ∈ N2 we have

(j − σ(−µ))(µ−1)

Γ(µ)
=

Γ(j + µ)

Γ(µ)Γ(j + 1)
=

j∏
l=1

j + µ− l

j + 1− l
< 1. (6)
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So, we can remove the absolute value and write

k−1∑
j=0

∣∣∣∣1− (j − σ(−µ))(µ−1)

Γ(µ)

∣∣∣∣ = k − 1− 1

Γ(µ)

k−1∑
j=1

Γ(j + µ)

Γ(j + 1)
.

Next, we rewrite the sum as a telescoping series,

k−1∑
j=1

Γ(j + µ)

Γ(j + 1)
=

1

µ

k−1∑
j=1

[
Γ(j + µ+ 1)

Γ(j + 1)
− Γ(j + µ)

Γ(j)

]
=

1

µ

[
Γ(k + µ)

Γ(k)
− Γ(1 + µ)

Γ(1)

] (7)

to get

k−1∑
j=0

∣∣∣∣1− (j − σ(−µ))(µ−1)

Γ(µ)

∣∣∣∣ = k − Γ(k + µ)

Γ(1 + µ)Γ(k)
, k ∈ N2. (8)

One can easily verify that the latter identity holds for each k ∈ N.

Theorem 3.1. Under assumption (H), the solution x of (3) uniformly converges on
any set ZK

0 , K ∈ N to the solution y of (4) if µ → 1− and x0 = y0.

Proof. Note that the limit

lim
µ→1−

(
k − Γ(k + µ)

Γ(1 + µ)Γ(k)

)
= 0

is uniform with respect to k ∈ ZK
1 , since

0 ≤ k − Γ(k + µ)

Γ(1 + µ)Γ(k)
= k

(
1− Γ(k + µ)

Γ(1 + µ)Γ(k + 1)

)
≤ k

(
1− (k + µ)µ−1

Γ(1 + µ)

)
≤ K

(
1− (K + µ)µ−1

Γ(1 + µ)

)
µ→1−

−−−−→ 0

due to Lemma 2.4. Consequently, estimation of Eµ(L1k
µ) given by Lemma 2.9 together

with identity (8) proves the statement.

Noting that

θµ(k) =

{
0, k = 0,(
k − Γ(k+µ)

Γ(1+µ)Γ(k)

)
Eµ(L1k

µ), k ∈ N

is increasing on N from 0 to ∞ (see (6) and (8)) together with Theorem 3.1 proves
the next result.
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Theorem 3.2. Under assumption (H), for any ε > 0, µ ∈ (0, 1) there exists K ∈ N
such that the solution x of (3) and y of (4) with x0 = y0 satisfy

∥x(k)− y(k)∥ ≤ Mε, k ∈ ZK
0 .

This K is given as a largest integer such that

eL
1
µ
1 K

µ

(
K − Γ(K + µ)

Γ(1 + µ)Γ(K)

)
≤ ε.

To provide a result not so strong as the latter one but more easy to apply, we state
the following corollary.

Corollary 3.3. Under (H), for any ε > 0, µ ∈ (0, 1), solutions x of (3) and y of (4)
with x0 = y0 satisfy

∥x(k)− y(k)∥ ≤ Mε, k ∈ ZK
0

with K ∈ N the largest integer satisfying

(1− µ) eL
1
µ
1 K K lnK ≤ εµ.

In particular, for ε = (1− µ)p for any fixed p ∈ (0, 1),

∥x(k)− y(k)∥ ≤ M(1− µ)p, k ∈ ZK
0 , (9)

where K ∈ N is the largest integer satisfying

eL
1
µ
1 K K lnK ≤ µ

(1− µ)1−p
. (10)

Proof. Let K ∈ N2. Then the following inequality holds

1− Γ(K + µ)

Γ(1 + µ)Γ(K + 1)
≤ 1− (K + µ)µ−1

Γ(1 + µ)

= 1−Kµ−1

(
1 + µ

K

)µ−1

Γ(1 + µ)
≤ 1−Kµ−1

(
1 + µ

2

)µ−1

Γ(1 + µ)
∗
≤ 1−Kµ−1 = (1− µ)Kα lnK ≤ (1− µ) lnK

(11)

for some α ∈ (µ − 1, 0). Here, the estimation
∗
≤ follows from Lemma 2.5 with x = 1.

Clearly, inequality (11) is valid also for k = 1.

Remark 1. Solutions x and y from Corollary 3.3 satisfy (9) e.g. in the following cases:

(1) if

K ≤ 2L
− 1

µ

1 W

(
1

2
L

1

µ

1

√
µ

(1− µ)1−p

)
(12)
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where W is the Lambert W function [7] defined as the inverse function to w 7→
w ew. Indeed, since K lnK ≤ K2, condition (10) is satisfied if

1

2
L

1

µ

1 K e
1

2
L

1
µ
1 K ≤ 1

2
L

1

µ

1

√
µ

(1− µ)1−p
,

which is equivalent to (12).
(2) if

K ≤ 1

L
1

µ

1 + 1
ln

µ

(1− µ)1−p
.

Here we used K lnK ≤ eK .

4. The case µ → 1+

In this section, we consider an initial value problem for fractional difference equation
(1) with µ ∈ (1, 2) and given f : N0 × Rn → Rn, along with a difference equation

∆y(k) = f(k − 1, y(k − 1)) + y1, k ∈ N,
y(0) = y0,

∆y(0) = y1,

(13)

where x0, x1, y0, y1 ∈ Rn. Again, we suppose assumption (H). Since the solution y of
(13) satisfies the equivalent sum equation

y(k) = y0 + ky1 +

k−2∑
j=0

f(j, y(j)), k ∈ N0,

we can use Lemma 2.8 and assumption (H) to get the estimation

∥x(k)− y(k)∥ ≤ ∥x0 − y0∥+ k∥x1 − y1∥

+

∥∥∥∥∥∥
k−2∑
j=0

(
(k − σ(j + 2− µ))(µ−1)

Γ(µ)
f(j, x(j))− f(j, y(j))

)∥∥∥∥∥∥
≤ ∥x0 − y0∥+ k∥x1 − y1∥

+
L

Γ(µ)

k−2∑
j=0

(k − σ(j + 2− µ))(µ−1)∥x(j)− y(j)∥

+M

k−2∑
j=0

∣∣∣∣1− (j − σ(−µ))(µ−1)

Γ(µ)

∣∣∣∣
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for each k ∈ N0. Applying Lemma 2.7 with m = 2 yields

∥x(k)− y(k)∥

≤

∥x0 − y0∥+ k∥x1 − y1∥+M

k−2∑
j=0

∣∣∣∣1− (j − σ(−µ))(µ−1)

Γ(µ)

∣∣∣∣
Eµ(Lk

µ)

for each k ∈ N0. So, for x0 = y0, x1 = y1, we get

∥x(k)− y(k)∥ ≤ Mθµ(k), θµ(k) = Eµ(Lk
µ)

k−2∑
j=0

∣∣∣∣1− (j − σ(−µ))(µ−1)

Γ(µ)

∣∣∣∣
for each k ∈ N0. Clearly, θµ(0) = θµ(1) = 0 for any µ ∈ (1, 2). Note that the absolute

value vanishes for j = 0. Furthermore, for j ∈ Zk−2
1 , k ∈ N3, we have

(j − σ(−µ))(µ−1)

Γ(µ)
=

Γ(j + µ)

Γ(µ)Γ(j + 1)
=

j∏
l=1

j + µ− l

j + 1− l
> 1. (14)

Hence, analogously to (7) we derive

k−2∑
j=0

∣∣∣∣1− (j − σ(−µ))(µ−1)

Γ(µ)

∣∣∣∣ = 1

Γ(µ)

k−2∑
j=1

Γ(j + µ)

Γ(j + 1)
−

k−2∑
j=1

1

=
1

Γ(1 + µ)

[
Γ(k + µ− 1)

Γ(k − 1)
− Γ(1 + µ)

Γ(1)

]
− k + 2

=
Γ(k + µ− 1)

Γ(1 + µ)Γ(k − 1)
− k + 1, k ∈ N3,

(15)

which remains valid also for k = 2.

Theorem 4.1. Under assumption (H), the solution x of (1) with µ ∈ (1, 4/3) uni-
formly converges on any set ZK

0 , K ∈ N2 to the solution y of (13) if µ → 1+ and
x0 = y0, x1 = y1.

Proof. Note that the limit

lim
µ→1+

(
Γ(k + µ− 1)

Γ(1 + µ)Γ(k − 1)
− k + 1

)
= 0

is uniform with respect to k ∈ ZK
2 , since

0 ≤ Γ(k + µ− 1)

Γ(1 + µ)Γ(k − 1)
− k + 1 = (k − 1)

(
Γ(k + µ− 1)

Γ(1 + µ)Γ(k)
− 1

)
≤ (k − 1)

(
kµ−1

Γ(1 + µ)
− 1

)
≤ (K − 1)

(
Kµ−1

Γ(1 + µ)
− 1

)
µ→1+

−−−−→ 0

due to Lemma 2.4. Consequently, estimation of Eµ(Lk
µ) given by Lemma 2.10 together

with identity (15) proves the statement.
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From (14) and (15) one can see that the function

θµ(k) =

{
0, k ∈ {0, 1},(

Γ(k+µ−1)
Γ(1+µ)Γ(k−1) − k + 1

)
Eµ(Lk

µ), k ∈ N2

is increasing on N2 from 0 to ∞. Therefore, Theorem 4.1 gives the next result.

Theorem 4.2. Under assumption (H), for any ε > 0, µ ∈ (1, 4/3) there exists K ∈ N2

such that the solution x of (1) and y of (13) with x0 = y0, x1 = y1 satisfy

∥x(k)− y(k)∥ ≤ Mε, k ∈ ZK
0 .

This K is given as a largest integer such that(
eL

1
µ K

µ
+

4
√
3 sin πµ

2

9µ

)(
Γ(K + µ− 1)

Γ(1 + µ)Γ(K − 1)
−K + 1

)
≤ ε.

Again, we present a simpler corollary.

Corollary 4.3. Under (H), for any ε > 0, µ ∈ (1, 4/3), solutions x of (1) and y of
(13) with x0 = y0, x1 = y1 satisfy

∥x(k)− y(k)∥ ≤ Mε, k ∈ ZK
0

with K ∈ N2 the largest integer satisfying

(µ− 1)

(
9 eL

1
µ K +4

√
3 sin

πµ

2

)
Kµ lnK ≤ 9εµ.

In particular, for ε = (µ− 1)p for any fixed p ∈ (0, 1),

∥x(k)− y(k)∥ ≤ M(µ− 1)p, k ∈ ZK
0 , (16)

where K ∈ N2 is the largest integer satisfying(
9 eL

1
µ K +4

√
3 sin

πµ

2

)
Kµ lnK ≤ 9µ

(µ− 1)1−p
. (17)

Proof. From the inequality

Γ(K + µ− 1)

Γ(1 + µ)Γ(K)
− 1 ≤ Kµ−1

Γ(1 + µ)
− 1

≤ Kµ−1 − 1 = (µ− 1)Kα lnK ≤ (µ− 1)Kµ−1 lnK

for some α ∈ (0, µ− 1), we derive

Γ(K + µ− 1)

Γ(1 + µ)Γ(K − 1)
−K + 1

≤ (µ− 1)(K − 1)Kµ−1 lnK ≤ (µ− 1)Kµ lnK.

12



Remark 2. Solutions x and y from Corollary 4.3 satisfy (16) e.g. in the following
cases:

(1) if

K ≤ (µ+ 1)L− 1

µW

(
1

µ+ 1
L

1

µ

(
9µ

16(µ− 1)1−p

) 1

µ+1

)
. (18)

Indeed, using estimations

Kµ lnK ≤ Kµ+1, 4
√
3 sin

πµ

2
≤ 7 eL

1
µ K

one can show that condition (17) is fulfilled if

16 eL
1
µ K Kµ+1 ≤ 9µ

(µ− 1)1−p
,

which is equivalent to (18).
(2) if

K ≤ 1

L
1

µ + 1
ln

9µ

16(µ− 1)1−p
.

Here we applied Kµ lnK ≤ K2 lnK ≤ eK for each K ∈ N2.

Next, we present a simple illustrative example.

Example 4.4. Let us consider the following initial value problems:

∆µ
∗x(k) = px(k + µ− 1), k ∈ N1−µ,

x(0) = x0,
(19)

∆y(k) = py(k), k ∈ N0,

y(0) = y0,
(20)

∆µ
∗u(k) = pu(k + µ− 2), k ∈ N2−µ,

u(0) = u0,

∆u(0) = u1,

(21)

∆v(k) = pv(k − 1) + v1, k ∈ N,
v(0) = v0,

∆v(0) = v1,

(22)
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where µ ∈ (0, 1) in (19) and µ ∈ (1, 2) in (21). It can be shown that the difference
equations have the solutions y(k) = (1 + p)ky0 and v(k) = c1λ

k
1 + c2λ

k
2 − y1/p with

λ1 =
1−

√
1 + 4p

2
, λ2 =

1 +
√
1 + 4p

2
,

c1 =
1

2

(
y0 +

y1
p

)
− 1

2
√
1 + 4p

(
2y1 + y0 +

y1
p

)
,

c2 =
1

2

(
y0 +

y1
p

)
+

1

2
√
1 + 4p

(
2y1 + y0 +

y1
p

)
.

Next,

x(k) = x0 +
p

Γ(µ)

k−1∑
j=0

(k − σ(j + 1− µ))(µ−1)x(j)

by [5, Lemma 2.4], and

u(k) = u0 + ku1 +
p

Γ(µ)

k−2∑
j=0

(k − σ(j + 2− µ))(µ−1)u(j)

by Lemma 2.8. To see the convergence, we set all the initial conditions equal to 1, i.e.,
x0 = y0 = u0 = v0 = u1 = v1 = 1, and p = 0.2. Figure 1 depicts the convergences
x → y and u → v as µ → 1− and µ → 1+, respectively.
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Figure 1. Convergence of solutions of fractional difference equations (19) (blue empty squares), (21) (red

empty circles) to solutions of integer-order difference equations (20) (black filled squares), (22) (black filled
circles), respectively. The closer µ ∈ {0.7, 0.8, 0.9, 1.1, 1.2, 1.3} is to 1, the more saturated the colors are.
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