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Abstract

The study of uniqueness of solutions of discontinuous dynamical systems has an important implica-
tion: multiple solutions to the initial value problem could not be found in real dynamical systems; also
the (attracting or repulsive) sliding mode is inherently linked to the uniqueness of solutions. In this
paper a strengthened Lipschitz-like condition for di¤erential inclusions and a geometrical approach
for the uniqueness of solutions for a class of Filippov dynamical systems are introduced as tools for
uniqueness. Several theoretical and practical examples are discussed.

keywords: Filippov solutions, attractive sliding mode, repulsive sliding mode, strengthened one
side Lipschitz condition.

1 Introduction

Over the years, there has been growing interest and need for the modeling, analysis, and control of non-
smooth dynamical systems characterized by discontinuous changes in system properties. A particular case
is represented by dynamical systems discontinuous with respect to the state variable. Examples of such
phenomenon are exhibited by various mechanical, electrical, biological, and natural systems.
Circa 1781 Coulomb introduced a model of the friction contact between solid bodies [1]. The Coulomb

model while widely used and accurate enough in many engineering applications it gives rise to di¢ cult
computational and analytical problems. Actually the discontinuous nature of Coulomb friction makes the
general problem di¢ cult. Many processes in industry and elsewhere exhibit regime switches, which may
be described as fast phenomena that may lead to large changes in the system dynamics and/or the system
state. Such switches may be due to external causes or may occur as a result of the process dynamics itself.
Examples include electrical networks in which for instance thyristors switch from conducting to non-
conducting mode, robotic mechanisms which switch from compliant to non-compliant modes, processes
under the in�uence of a discrete (for instance on/o¤) controller, thermostats implement closed-loop bang-

bang controllers to regulate room temperature, aerial and underwater terrains are yet two more examples
where discontinuities naturally occur from the interaction with the environment.
Regime-switching systems occur in several disparate areas and are also known as discontinuous dynam-

ical systems, multimodal systems, systems with variable topology, or hybrid systems. Although one may
attempt to describe the involved fast phenomena in a continuous way, this easily leads to sti¤ numerical
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problems and an alternative is to model the switching as discrete events. Examples and background theory
on this �eld can be found in the early works [2][3], [4], [5][6], [7], or in recent works as [8], [9] or[10].

Since the vector �eld is discontinuous in such a system, continuously di¤erentiable curves that satisfy
the system do not exist in general, and we must face the issue of identifying a suitable notion of solution.
A look into the literature reveals that there is not a unique answer to this question. Depending on the
speci�c problem at hand, di¤erent authors have di¤erent de�nitions.

Although general notions and basic elements of the theory of such systems may be found in the early
references, the book of Filippov [11] is unanimously accepted today as one of the major contributions to
the general theory of discontinuous dynamical systems.

For simplicity, we consider vector �elds de�ned over the whole Euclidean space. Thus, we focus on
dynamical systems which can be modelled by the following autonomous Initial Value Problem (IVP)
discontinuous with respect to the state variable

:
x = f(x); x(0) = x0; x0 2 Rn; t 2 I = [0;1); (1)

under the standing assumption that f : Rn ! Rn is locally bounded in the following form

_x = f (x) := Ax+B s(x); x(0) = x0; t 2 I = [0; 1) ; (2)

with A = (ai;j)n�n ; B = (bi;j)n�n real constant matrices and the vector function s : R
n ! Rn given by

s(x) =

0B@ sgn(x1)
...

sgn(xn)

1CA :
This particular form of IVP describes a lot of switching physical phenomena1 .
In general, the great generality of known discontinuous mechanical systems analyzed in the literature

are planar while discontinuous electrical systems are three-dimensional autonomous 2

Throughout this paper, for the sake of simplicity, only ODEs without the initial conditions will be
considered.

Example 1 The simplest example of Coulomb friction has the following model [14]

_x1 = x2; (3)

_x2 = �x1 � sgn(x2);

with A =
�

0 1
�1 0

�
; B =

�
0 0
0 �1

�
s(x) =

�
sgn(x1)
sgn(x2)

�
:

Example 2 The autonomous harmonic oscillator (a mechanical system with two degrees of freedom) is
one of the most popular examples in textbooks of periodic behavior in physical systems. A nonsmooth
version [15] is modeled by

1A more general form of IVP (2) modeling non-smooth dynamical systems is analyzed in [12].
2However there are hygher dimensional discontinuous mechanical dynamical systems presented in literature (see e.g. [13]).
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:
x1 = sgn(x2); (4)
:
x2 = �sgn(x1);

In the following examples, a represents the bifurcation parameter whose variation in�uences the system
behavior.

Example 3 In [16] several variants of the mathematical model of Chua�s circuit are presented . One of
them is the following (see [17] for some properties of this system)

:
x1 = �2:57x1 + 9x2 + 3:87 sgn (x1);
:
x2 = x1 � x2 + x3;
:
x3 = ��x2 ; � > 0:

(5)

Example 4 One of the simplest possible structure for a chaotic oscillator has the following mathematical
model [18]

:
x1 = x2;
:
x2 = x3;
:
x3 = ��(x1 + x2 + x3 � sgn(x1)) ; � > 0:

(6)

Example 5 The following system represents a simpli�ed model of the regulation systems of a steam
turbine [19]

:
x1 = � (x3 � x1 � sgn (x2)) ;
:
x2 = x1 � x2;
:
x3 = � x2; � > 0:

: (7)

Example 6 The next theoretical example is taken from [11]

:
x1 = 2sgn(x1)� 6sgn(x2)� 2sgn(x3);
:
x2 = 6sgn(x1)� 4sgn(x3);
:
x3 = 12sgn(x1) + sgn(x2)� 9sgn(x3):

(8)

The existence and uniqueness of solutions to IVP (2) are essential to de�ne the notion of dynamical
systems especially for discontinuous dynamical systems, because due to the right-hand discontinuity,
classical solutions of IVP might not even exist and even Caratheodory�s existence theorem (see e.g. [20])
fails to apply.
As an example let us consider the discontinuous IVP:

:
x = sgn (x), x(0) = 0. There is no classical solu-

tion starting from 0 despite the fact that x = 0 veri�es the equation, because in some small neighborhood
of x = 0 this solution presents the tendency to "jump" to one of the possible solutions x(t) = �t.
However ODE: _x = � sgn(x) has a solution starting from any initial condition x(0)
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x(t) =

8<: x(0) + t for x < 0 de�ned on [0;�x(0));
0; for x = 0 de�ned on [0;1);
x(0)� t for x > 0 de�ned on [0; x(0));

but these solutions (in the classical sense, i.e. continuously di¤erentiable) cannot be continued along the
axis x = 0 because the derivative has a discontinuity in a small neighborhood of x = 0:
The following ODE

_x = 2� 3 sgn(x); (9)

has, for x 6= 0; the solutions
x(t) =

�
5 t+ C1; x < 0;
�t+ C2; x > 0;

but, as t increases, these classical solutions tend to the line x = 0, where they cannot continue to evolve
since the function x(t) = 0 does not veri�es the equation. Thus, there are no classical (continuously
di¤erentiable) solutions starting from 0 (see Fig.1a).
Thus, one can see that the discontinuity does not necessarily implies the non-existence of solutions. To

provide the possibility for the solutions to IVP (2) to be continued it is necessary to modify its right-hand
side.
The structure of the paper is as follows: Section 2 presents the set-valued IVP associated with IVP 2;

Section 3 deals with the existence of solutions to the set-valued IVP; Section 4 presents the main results
of the paper regarding the uniqueness of the generalized solutions and Section 5 shows several examples.
The last section gives some concluding remarks.

2 The set-valued IVP

For discontinuous vector �elds, existence and uniqueness of solutions is not guaranteed in general no
matter what notion of solution is chosen. Also, the classical notion of solution for ordinary di¤erential
equations is too restrictive when considering discontinuous vector �elds. A resolution of the di¢ culty
about existence is to extend the notion of di¤erential equation to di¤erential inclusion. The problem
was solved by Filippov [11] using a generalized concept of solution. The IVP is shifted to the following
set-valued one

:
x 2 F (x); x(0) = x0; for almost all t 2 I ; (10)

where F : Rn � Rn is a set-valued function mapping Rn into the set of all nonempty, compact and convex
subsets of Rn and is obtained by the so-called Filippov regularization

F (x) =
\
">0

\
� (M)=0

conv f ((x+ "B)nM) ; (11)

where M is the set of discontinuity points of f , B the unit ball in Rn, � the Lebesgue measure and
conv the closed convex hull. At the points where the function f is continuous, F (x) consists of one point,
which coincides to the value of f at this point, i.e. F (x) = ff(x)g. At the discontinuity points, the set
F (x) is given by (11). In other words, F (x) is the convex hull of values of f (x�); x� 2M , ignoring the
behavior on null sets. In Filippov�s de�nition, the crucial point is the "minus a null set M" (see (11)):
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the concept is set up to ignore possible misbehavior of f on sets of small measure. This approach is
implicitly used in most introductory references.
Thus, the state derivative belongs to a set of directions, rather than being a speci�c direction deter-

mined by the vector �eld (Fig.2). This �exibility is key to providing general conditions on the vector �eld
under which Filippov solutions exist.
Because of the way the Filippov set-valued map is de�ned, its value at a point is actually independent

of the value of the vector �eld at that speci�c point.
As an example, the Filippov regularization applied to the unidimensional sign function gives the set-

valued function

Sgn (x) =

8<: f�1g x < 0;
[�1; 1] x = 0;
f+1g x > 0:

Thus, sgn(0) is taken as the whole interval [�1; 1] "connecting" the points �1 and +1:
Related versions of the Filippov regularization were developed by Krasovskij, Hermes, and others (see

review papers [21] and [23]).
Applying the Filippov regularization to the IVP (2) transforms it into a multivalued Cauchy

problem

:
x 2 F (x) := Ax+B S(x); x(0) = x0; for almost all t 2 I; (12)

where S(x) = (Sgn(x1); : : : ; Sgn(xn))
T
: The discontinuity hypersurface (manifold) is a polyhedron �

whose �at faces of equations �(xi) := bijxi = 0 split Rn into several domains 
�i generated by the sign of
�; i.e. Rn = 
�

S

+

S
� where 
� =

S

�i and 


+ =
S

+i :

For example, (5) becomes

:
x1 2 �2:57x1 + 9x2 + 3:86 Sgn (x1);
:
x2 = x1 � x2 + x3;
:
x3 = ��x2 ; a > 0;

(13)

for which the discontinuity surface � has the equation �(x1) := x1 = 0. The domains generated by
this surface � are 
+ = fx1; x2; x3) 2 R3j x1 > 0 g and 
� = fx1; x2; x3) 2 R3j x1 < 0 g:
It is interesting to see that on 
+i ( 


�
i ) the motion is governed by the equation (2) while on � by a

particular equation deduced in [11], which wil not be discussed in this paper.

2.1 Existence of generalized (Filippov) solutions

De�nition 7 A generalized (Filippov) solution to (1) is an absolutely continuous function x : [0;1) �!
R satisfying (10) for almost all t 2 [0;1):

Note that any vector �eld that di¤ers from the vector �eld of f by a set of measure zero has the same
set-valued map, and hence the same set of Filippov solutions.
For our class of IVP (2), a generalized solution is an absolutely continuous function satisfying (12) for

almost all t 2 I:
Non-existence of solutions implies that the model is inherently wrong, so in science the physical system

does not cease to exist when a situation where non-existence arises in the model.
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On the other hand, the multiplicity of solutions may indicate that there is insu¢ cient information in
the model to uniquely predict the outcome of a situation (see [24]).
Therefore, the existence of solutions represents an important task.
The existence of a solution to the IVP (10) is enssured by the well-known existence theorem, presented

in many works (e.g. [25], [26], [27]).

De�nition 8 A set-valued function F veri�es a growth condition if there exist nonnegative constants k
and a such that

k � k� k k x k +a;

for all � 2 F (x); x 2 Rn:

Notation 9 Denote by F the set of all set-valued functions satisfying the following so-called basic con-
ditions: nonemptyness, closedness and convex-valued that together verifying supplementary the growth
condition.

Theorem 10 The IVP (2) admits at least one generalized solution.

Proof. In [17] it is proved that a more general than (12) IVP, with a nonlinear Lipschitz vector function
g : Rn!Rn instead of Ax in (12), and has in the set-valued right-hand side a function belonging to F :
Ax as a linear function is Lipschitz. Thus, F in (12) belongs to F ; so (12) admits at least one generalized
solution and therefore IVP (2) admits a generalized solution.
The generalized solution is continuable to 1 (i.e. the maximal existence interval is [0;1)) if a com-

pactness condition is satis�ed (see [17], where it is proved that this class of dynamical systems satisfy the
condition).
The growth condition implies that all solutions remain in some bounded subset and are being used

instead of the global boundness of the right-hand side.
The notions and basic results on the existence of solutions to di¤erential inclusions can be found in

[25] and [26].

Remark 11 i) The closedness condition in Existence Theorem 10 refers to the graph of F (see e.g. [26]).
ii) The nonemptyness condition guarantees the existence of a global solution on the whole interval I.

If we consider the corresponding set-valued IVP:
:
x 2 Sgn (x), x(0) = x0, then there are multiple

Filippov solutions: x(t) = 0 for x0 = 0 and x(t) = �t + x0 for x0 6= 0 de�ned on the maximal interval
[0;1); while for the set-valued IVP of the discontinuous ODE

:
x = �sgn (x); the line x = 0 is now

the unique Filippov solution, de�ned on the maximal interval [0;1): After Filippov regularization, the
Filippov solution to ODE (9) can be continued uniquely with x = 0:

Remark 12 Dealing with dynamical systems that are modeled by di¤erential inclusions and not di¤eren-
tial equations is only a technical problem, since these systems can be approximated by smooth ones (see
[28]).
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3 Uniqueness of Filippov solutions

In general, discontinuous dynamical systems do not have unique Filippov solutions. Multiplicity of so-
lutions indicates that there are insu¢ cient informations on the physical model to uniquely predict its
behavior
For the class of IVP (2) there are su¢ cient conditions for uniqueness of solutions. In this paper, we

focus on one-sided Lipschitz-like and geometrical conditions from the vector �elds approach.
The existence and uniqueness in 
i is enssured in the usual way since in 
i; f is continuous. Therefore

a special attention should be paid on �, where f is discontinuous.
The uniqueness of solution is useful not only for the convergence study of numerical methods for

di¤erential inclusions but also to verify if a discontinuous IVP de�nes a dynamical system or a generalized
one (see [29] for the continuous case and [30] for a class of discontinuous dynamical systems).
Generally, Lipschitz-like conditions are utilized to ensure the convergence of di¤erence methods for

di¤erential inclusions. Implicitly, in these cases the uniqueness must be assured.
In the cases of set-valued IVP like (12) which modells discontinuous dynamical systems, the usual Lip-

schitz condition (for set-valued right-hand side) is not adequate. Instead, the uniform one-sided Lipschitz
(UOSL) condition is utilized.

De�nition 13 [31] Let h�j�i be the scalar product in Rn with the induced norm k � k : A set-value function
F satis�es an UOSL condition with the one-sided Lipschitz constant � (not necessarily positive) if

h�0 � �00jx0 � x00i � � k x0 � x00 k2;

holds for all x0; x� 2 Rn; �0 2 F (x0); �00 2 F (x00):

However, for our class of discontinuous IVP, we shall use a strengthened version, the Strengthened
One-Sided Lipschitz (SOSL) condition, introduced in [31] and [33].

De�nition 14 The set-valued function F satis�es a SOSL condition with one-sided Lipschitz constants
(�1; �2; : : : ; �n) ; if the implication

x00i > x
0
i =) �0i � �00i + �i k x0 � x00 k;

is true for all x0; x� 2 Rn; �0 2 F (x0); �00 2 F (x00); and all components i = 1; : : : ; n:

Remark 15 i) For n = 1; SOSL condition is satis�ed if and only if the usual UOSL condition holds,
while for n > 1; SOSL condition is stronger then UOSL.
ii) The unidimensional set-valued function �Sgn(x) satis�es SOSL, while +Sgn(x) does not.

Following some convergence results on numerical methods for di¤erential inclusions presented in several
works (e.g. [35] and [22]), the following corollary for the general case of IVP (10) can be established.

Corollary 16 The IVP (10) with F satisfying SOSL condition admits at most one generalized solution.

Proof. (sketch) As stated in Remark 15, the SOSL condition implies UOSL condition (see e.g. [35][27]
or [11] for a proof) and the IVP (10) satisfying UOSL admits a unique solution.

The following theorem, which is the �rst main result of this paper, provides a su¢ cient condition for
uniqueness.
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Theorem 17 Let the IVP (2). If B is not positive-de�nite, then the IVP (2) admits a unique (right)
generalized solution.

Proof. The existence comes from Theorem 10. Thus it is easy to verify that F de�ned by the right-hand
side of (12) is of F class: If B is not positive de�nite matrix, then bijSgn (xi) ei; where ei is the i-th
canonical unit vector in Rn; veri�es the SOSL condition (see [35]). Ax is Lipschitz continuous and in [31]
it is proved that the sum of a Lipschitz function and a function having the form bijSgn (xi) e

i veri�es
UOSL condition. Therefore, the uniqueness is enssured (see [17] for the complete proof for a more general
case).
The SOSL condition is only su¢ cient, so nothing can be said if at least one of the coe¢ cients of the

matrix B is positive. For example, the following ODEs (modi�ed version of an example presented in [14])� :
x1 = 4 + 2sgn(x2);
:
x2 = 2� 4sgn(x2);

(14)

has a unique solution even the matrix B contains positive coe¢ cients. In these kind of situations, the
geometrical approach could be applied.
To study the motions of dynamical systems modeled by (2) on �; denote by Ni the normal vector at

a point x belonging to one of the face, �i; of the hypersurface �; x 2 �i; just at the boundary of two
adjacent domains 
+i and 


�
i for some i 2 f1; : : : ; ng; and let f

+
i and f �

i be the vector �elds approaching
x from 
+i and 


�
i i.e. �(xi) > 0 and �(xi) < 0; respectively (it is supposed that the positive sense of Ni

is directed towards 
+i ) and f
�
i Ni

the projections of f � on Ni:
For the sake of simplicity in the following we will drop the index i:
Then, three possible situations are identi�ed in the following result, which is the second main result

on uniqueness presented in this paper.

Theorem 18 Let IVP (12) with F de�ned by (11). If, at some point x 2 �; one of the following condi-
tions holds

1) f �
N f +

N > 0;

2) f �
N > 0 and f +

N < 0;

then the generalized solution is unique.
If

3) f +
N > 0 and f �

N < 0;

then a generalized solution starting from � is not unique.

Proof. (sketch) Under the stated assumptions, when reaching �, Filippov solutions might cross it or slide
along it. Thus:
1) If f �

N and f +
N have the same sense as N (Fig.3a) a solution starting from the initial condition x0 2


+(or 
�) will cross the discontinuity surface �:The solution stays on the hypersurface at only one instant
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of time but not on an interval of time. Thus, the uniqueness assured in 
� is preserved when � is crossed.
2) If f +

N has opposite sense to N while f �
N has the same sense to it (Fig.3b), a generalized solution

reaching some x 2 � cannot escape and will be forced to remain on � which is attracting.
3) If the generalized solution starts near � it will move away from it by the vector �elds f�, but a solution
starting from some x 2 � may at one moment of time either leave � to 
+ or to 
� (Fig.3c) or stay for
some time interval on �; which is repelling (Fig.3d).

These motions corresponding to 2) and 3) are called attractive sliding mode and repulsive sliding mode,

respectively. The repulsive sliding mode cannot occur in real systems (as stated in [11]), however.
More information about the vector �eld approach of uniqueness of solutions is referred to [11].

Remark 19 i) Table 1 presents a comparation (advantages and disavantages) between Theorem 17 and
Theorem 18.

Theorem 17 Theorem 18
accessibility + -
phase portrait informations - +
sliding mode informations - +
solution multiplicity - +
global information + -

Table1

ii) Because the nonpositivenes of B in Theorem 17 is only a su¢ cient-like condition, if some coe¢ cients
bij 2 B are positive, then nothing can be said about the uniqueness and therefore Theorem 18 can be
explored as well.
iii) The geometric approach in Theorem 18 has a disavantage since it refers to a single point. Anyway in
our case, if one of the conditions 1), 2) or 3) is satis�ed at some point of a discontinuity surface, then the
condition is ful�lled over the entire surface.
iv) For the attracting sliding mode, if we consider the backward time, then the motion becomes a repulsing
sliding mode, i.e. the (left) generalized solution may not be unique.
v) Sliding mode in case 1) of Theorem 18 is impossible.
vi) In case 3), the classical solutions of a discontinuous IVP cannot cross the discontinuity surface �;
but once the IVP is switched into a set-valued IVP by e.g. Filippov regularization, the "missing" values
between the segment ends f+ and f� are �lled and a generalized solution from e.g. 
+i near � can change
the direction to 
�i and cross � at some x; because this derivative enjoys enough values given by F (x)
which link the end points of f+ and f� (Fig.2).

In summary, the possibilities depicted in Scheme 4 may actually happen.

4 Applications

All the presented examples verify the existence conditions in Theorem 10. Therefore in this section we
shall study only the uniqueness of solutions.
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The numerical solutions presented in this section were obtained using a special numerical method for
di¤erential inclusions, namely forward Euler method (the background for numerical method for di¤erential
inclusions can be found in [32][34][36] or [35]).

� First consider the example modeled by (3) which has a unique solution since b22 < 0 and Theorem
17 applies. Also, f�(x) = lim f(x) for (x1; x2) �! (x1; 0) with x2 < 0 has the expressions f�(x) =
(x2;�x1 + 1) and f+(x) = (x2;�x1 � 1). The projections of f� on N = (0; 1) are f�N (x) = �x1+1
and f+N = �x1 � 1: Therefore: a) for x1 =2 (�1; 1) ; f�N ; f

+
N have the same sign and condition 1)

in Theorem 18 is certi�ed; b) x1 2 (�1; 1), f�N > 0 and f+N < 0 and the attracting sliding mode
appears; the unique solution tends to the origin (Fig.5).

� Second, consider the Example modeled by (4). Because b12 > 0; Theorem 17 cannot be used.
Therefore, we will check Theorem 18 (Fig.6). The lines x1 = 0 and x2 = 0 split the plane in four
domains I; II; III; IV; separated by the lines �1;�2;�3 and �4 with the normals N1 = (0; 1) and
N2 = (1; 0): For example in the domain I; x1; x2 > 0 the vector �eld is fI = (1;�1) and across
�2 we have fIN2 = 1 > 0: Therefore, we have the case 1) of Theorem 18 and the solutions is unique.
The same happens across all the discontinuity lines.

� In the case of Example (5), again B is not nonpositive and therefore the uniqueness has to be
analyzed via vector �eld directions. A chaotic trajectory for � = 15:7 is depicted in Fig.7a.
f�(x) = lim f(x) for x ! (0; x2; x3) ; x1 < 0: Thus f�(x) = (9x2 � 3:87;�x2 + x3;�ax2)T : Also
f+(x) = (9x2 + 3:87;�x2 + x3;�ax2)T : The normal to the discontinuity surface � of equation
x1 = 0 is N = (1; 0; 0) : Thus f�N = f

�N = �3:87 < 0 while f+N = 3:87 > 0: Therefore Theorem (18,
3), shows that the solution is not unique. In Fig.7b, it can be seen that in the neighborhood of the
discontinuity surface the vector �elds have opposite sense.

� The example (6) has b33 > 0, therefore the uniqueness has to be veri�ed with Theorem18. It is easy
to see that f�N have opposite signs in the neighborhood of �, and thus the generalized solution is
not unique (Fig.8).

� For the example (7), B is negative and thus by (17) the solution is unique. This can be deduced
via Theorem 18 too. Thus f�(x) = (ax3 � ax1 + a; x1; 0)T ; f+(x) = (ax3 � ax1 � a; x1; 0)T ; N =
(0; 1; 0) ; f+N = f

�
N = x1 and the condition 1) in Theorem 18 is veri�ed (Fig.9).

� Finally consider the example (8). Theorem 17 cannot be used. Therefore, the geometrical approach
via Theorem 18, 1) will be used. As can be seen in Fig.10, on each discontinuity surfaces the vector
�elds have the same sense, so the generalized solution is unique.

5 Concluding remarks

In this paper we have presented in a uni�ed way some su¢ cient conditions on the uniqueness of solutions to
the discontinuous IVP 2. The approach consists in the use of a strengthened one-sided Lipschitz condition
utilized for the convergence of some special numerical methods for di¤erential inclusions, and the vector
�eld approach which can be used as an alternative for the case when the above Lipschitz condition fails.
Despite the fact that Theorem 17 is easily accessible in applications -it requires solely the negativeness

of the b coe¢ cients in the IVP (2)- it is restrictive enough. Thus, there are cases when some b coe¢ cients
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are positive and yet the Filippov solutions are unique. Theorem 18 cope with these situations even it
works in a more laborious way.
Theorem 18 allows the study of attractive and repulsive sliding modes, which are essential for control

techniques (e.g. sliding mode control in higher-order systems).
The study of several examples coming from theoretical or practical applications shows that this algo-

rithm for the uniqueness (Figure 4) is very useful.
A similar way for the uniqueness of a more general class of systems remains as a future task.
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[20] Coddington E. Levinson N. Theory of Ordinary Di¤erential Equations. Tata McGraw Hill, New Delhi
1972. Originally published by McGraw Hill 1955.

[21] Hájel O. Discontinuous Di¤erential Equations, I & II. J. Di¤. Eq.,32,149-185, (1979).

[22] Maresch K. Implicit Runge-Kutta methods for Di¤ernetial Inclusions. Numer. Funct. Anal. and Op-
tim., 11, 937-958, (1991)

[23] Cortes J. Discontinuous Dynamical Systems: A tutorial on solutions, nonsmooth analysis and stabil-
ity. IEEE Control Systems Magazine, 2008, to appear; 28(3).

[24] Stewart D.E. and Trinkle J.C. Dynamics, Frictions and Complementary Problems, manuscript.

[25] Aubin J.-P. and Cellina A. Di¤erential Inclusions. Berlin: Springer-Verlag, Berlin; 1984.

[26] Aubin J.-P. and Frankowska H. Set-Valued Analysis. Vol.2 of Systems and Control: Foundations and
Applications, Birkhäuser, Boston, Basel, Berlin, 1984.

[27] Lempio F. Di¤erence Methods for Di¤erential Inclusions. Lecture Notes in Economics and Mathe-
matical Systems, ; 378 (2): 236-263.

[28] Danca M.-F. and Codreanu S. On a possible approximation of discontinuous dynamical systems,
Chaos, Solitons & Fractals, 13,681-691, (2002).

[29] Stuart A.M. and Humphries A.R. Dynamical systems and Numerical Analysis. Cambridge University
Press; 1996.

[30] Danca M.-F. Synchronization of switch dynamical systems. International Journal Bifurcation &
Chaos, 12,1813-1826, (2002).

[31] Lempio F. Euler�s method revisited. Proceedings of Steklov Institute of Mathematics, Moskow, 211,
473-494, (1995)

[32] Dontchev A. and Lempio F. Di¤erence Methods for Di¤erential Inclusions: A Survey, SIAM Review,
34(2), 263-294, (1992).

[33] Lempio F. and Veliov V. Discrete Approximations of Di¤erential Inclusions. Bayreuher Mathematische
Schriften, 54,149-232,(1998)

[34] K.-Maresch A. and Lempio F. Di¤erence Methods with Selection Strategies for Di¤erential Inclusions,
Numer. Funct. Anal. and Optimiz., 14(5&6), 555-572, (1993).

12



[35] Lempio F. Modi�ed Euler Methods for Di¤erential Inclusions, A. B. Kurzhanski, V. M. Veliov, Set-
Valued Analysis and Di¤erential Inclusions. A coll. of papers resulting from a worshop held in Pam-
porovo, Bulgaria, Septeber 1990, Boston-Basel-Berlin: Birkhäuser, 1993.

[36] Taubert K. Converging Multistep Methods for Initial Value Problems Involving Multivalued Maps.
Computing, 27,121-136, (1981)

13



Figure captions
Figure 1: a) The IVP (9): a) classical solutions; b) Filippov solutions.
Figure 2: Vector �elds (sketch): a) before regularization; b) after regularization.
Figure 3: Sketch of discontinuous vector �elds: a) the unique solution crosses the discontinuity surface;

b) attracting sliding mode: the unique solution once arived on � slides along it; c) and d) repulsing sliding
mode: c) the solution (not unique) remains on � only for an instant of time and may go to any of the
continuity domains; d) the solution remains on � for an interval of time:
Figure 4: The algorithm of the uniqueness study via Theorems 17 and 18.
Figure 5. Phase portrait and vector �elds for example 1. The Filippov solution is unique. Between -1

and +1 there is an attracting sliding mode.
Figure 6. Phase portrait and vector �elds for example 2. The Filippov solution is unique.
Figure 7. Phase portrait and vector �elds for the generalized Chua discontinuous dynamical system

modele by (5): a) three-dimensional view; b) details wherefrom the non-uniqueness can be deduced: the
vector �elds near � have oposite signs.
Figure 8. Phase portrait and vector �elds for the electronic oscillator described in Example 4. The

vector �elds nier � have oposite signs (f �(x) = (x2; x3;�ax2 � ax3 � a)) and a repulsive sliding mode
appears.
Figure 9. Phase portrait and vector �elds for the turbine modeled by (7). The vector �elds have the

same orientation near the discontinuity surface therefore, the solution is unique.
Figure 10. The theoretical example 6. a) phase portrait. b) vector �elds and discontinuity planes.

14



Figure 1

15



Figure 2

16



Figure 3

17



Figure 4

18



Figure 5

19



Figure 6

20



Figure 7a

21



Figure 7b

22



Figure 8

23



Figure 9

24



Figure 10a

25



Figure 10b

26


