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Abstract

In this paper, the chaotic behavior of a simplest autonomous memristor-based circuit of fractional
order is suppressed by periodic impulses applied to one or several state variables. The circuit
consists of two passive linear elements, a capacitor and an inductor, as well as a nonlinear memristive
element. It is shown that by applying a sequence of adequate (identical or different) periodic
impulses to one or several variables, the chaotic behavior can be suppressed. Impulse values and
control timing are determined numerically, based on the bifurcation diagram with impulses as
bifurcation parameters. Empirically, the probability to have a reasonably wide range of impulses to
suppress chaos is quite large, ensuring that chaos suppression can be implemented, as demonstrated
by several examples presented.
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1. Introduction

The simplest autonomous memristor-based chaotic circuit (SCC) of integer order, presented by
Muthuswamy and Chua in [1], consists of only three circuit elements. As shown in Fig. 1, there
are two energy-storage passive and linear elements (an inductor and a capacitor), and a nonlinear
active memristor. In this way, the required circuit elements to generate chaos reduces to three,
giving “the simplest possible circuit in the sense that we also have only one locally-active element,
the memristor” [1] (see [2] for the notion of local activity).

The existence of memristor was stipulated by Chua in 1971 in his seminal paper “The missing
circuit element” [3]. From a circuit-theoretic point of view, he postulated that there are four
fundamental circuit variables, namely the voltage v, charge q, flux linkage φ and current i, and six
two-variable combinations of those elements, as shown in Table 1 [3, 4]. “From the logical as well
as axiomatic points of view, it is necessary for the sake of completeness to postulate the existence
of a fourth basic two-terminal circuit element which is characterized by a φ − q curve” [3], filling
the missing nonlinear relationship between charge q and flux φ, M(φ, q) = 0 (Table 1).

The term memristor, coined by Chua, also reflects the fact that it behaves somewhat like a
nonlinear resistor with memory.

The real existence of this device was established in 2008, when a physical prototype of a two-
terminal device behaving as memristor was announced in Nature [5], after Williams’s group in the
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Combinations of
q, v, φ, i

Relationships

(v, i) v = Ri
(φ, i) φ = Li

(q, i) q(t) =
∫ t
−∞ i(τ)dτ

(q, v) q = Cv

(φ, v) φ =
∫ t
−∞ v(τ)dτ

(φ, q) memristor: M(φ, q) = 0

Table 1: Six possible 2-variable relationships.

HP Labs reported it on 30 April 2008. They proved the existence of a fourth basic element in
integrated circuits by realizing the world-first memristor, characterizing the memristor as being “a
contraction of memory resistor, because that is exactly its function: to remember its history”.

As shown by Chua, memristor can replace a circuit of over 15 transistors and several other
passive elements, especially in small (molecular or cellular) scales. Therefore, it is useful for a
large number of potential applications, generating great interest from the scientific community.
For example, behaving functionally like synapses, memristors could be utilized in analog circuits
mimicking the functions of the human brain (see e.g. [4]). Today, there are many research groups
working on similar projects, for example, IBMs Blue Brain project, Howard Hughes Medical Insti-
tute's Janelia Farm, and Harvard Center for Brain Science. There are also many other applications
in various areas, such as in electric circuits [6], logic circuits [7], concepts of computer memory
[8], DRAM, flash, and disks [9], electroforming of metals and semiconductor oxides [10], memristor
networks [11], bioelectricity modeling [12], next generation computers [13], cellular automata [11],
linearized model of the pinched i − v hysteresis [14], to mention only a few (more references can
be found in [15]). The increasing interest in this element is strongly justified by the fact that more
than 1800 papers published on the topic up to the middle of 2015 according to the Web of Science.
It is also remarked that the concept of memristor was extended by Chua to the memcapacitor and
meminductor [16], which also generate a lot of excitement to the field.

Figure 1: Simplest autonomous memristor-based chaotic circuit, as presented in [1].
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Figure 2: Scheme of titanium-dioxide (TiO2) memristor (adapted from [5]).

Here, consider the current-controlled (or charge-controlled) ideal memristor [3] (Fig. 2), as
presented by the HP group, which is modeled by the following port and state equations respectively
[5] (similarly, voltage-controlled memristor equations can be defined [17]):

M :

{
vM (t) = R(x(t))iM (t), (1a)
.
x(t) = ±kf(x(t))iM (t). (1b)

In this model, R(x), called the memristence [3] as defined for HP’s memristor [5], is a sum of the
resistances of the doped and undoped regions (Fig. 2):

R(x) = xRon + (1− x)Roff , x =
w

D
∈ (0, 1), (2)

where x represents the internal state memristor variable, with w being the width of the doped
region, referenced to as the total length D (≈ 10nm) of the (TiO2-based) semiconductor film
sandwiched between two metal contacts [5]1; Ron and Roff (Ron ≪ Roff ) are the minimum and
the maximum resistances respectively, to which the device can be configured (corresponding to
w = 0 and w = D respectively, see also [6, 19]). In (1b), f(x) is the so-called dopant drift window
function, which models the internal state of the memristor, and k depends directly proportional to
Ron and inversely proportional to D, while ± represents the memristor polarity [5].

Hereafter, for notational simplicity, unless necessary the time argument t will be dropped.

The nonlinear scalar function f defined in (1b), is necessary to compensate the differences
between the experimental model and the theoretical model. Function f is continuous with which
the solution existence and uniqueness of the underlying state equation are ensured. Several variants
of f have been proposed2, and one of the mostly used is [6]

f(x) = 1− (2x− 1)2p, (3)

1Nowadays, there are several techniques to realize memristors by using different materials (see e.g. [18]).
2A linear approximation is presented in [20], with a nonlinear form in [21] (see also [22, 15]).
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Figure 3: Graphs of window function f(x) = 1− (2x− 1)2p for p = 1 and p = 15.

with p being a positive integer. The behavior of this function on some subintervals can be linear or
nonlinear, depending on p (Fig. 3), an important parameter for calculating the fractional resistance
of the ideal memristor.

In order to build the SCC, Muthuswamy and Chua [23] used a more general vector window
function (1b), f(x, iM ) = iM − αx − iMx, and a nonlinear memristance (1a), R(x) = β(x2 − 1),
with α and β being real parameters. This kind of generalization of the ideal memristor (1a)-(1b)
is called a memristive system3:

M :

{
VM = R(x)iM = β(x2 − 1)iM , (4a)
.
x = f(x, iM ) = iM − αx− iMx. (4b)

Remark 1. Compared to other memristor-based chaotic circuits, the autonomous SCC with R(x)
given by (4a)-(4b) is bounded-input bounded-output [1]. Also, the memristive system (4a)-(4b)
makes possible the existence of a chaotic single-loop circuit with three independent state variables.

Sometimes, physical phenomena are modeled more accurately by differential equations of frac-
tional order than by integer-order equations [24]. Therefore, it is not at all surprising that the
combined use of fractional calculus and impulsive systems was implemented in circuit experiments
(see e.g. [19, 25]).

If derivatives of the Caputo type are used to model these dynamical systems, the initial condi-
tions can be formulated just as for classical ordinary differential equations, x(0) = x0 [26]. Given
a function f : Rn → R, n ≥ 1, Caputo’s differential operator of order 0 < q ≤ 1 with respect to the
starting point 0, applied to f , is defined as (see e.g. [27])

Dq
∗f(t) =

1

Γ(1− q)

∫ t

0
(t− s)−qf ′(s) ds,

3In [1], it is mentioned that other forms for R have already been or could be chosen.
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where Γ is Euler’s Gamma function.
On the other hand, impulsive fractional differential equations represent a framework for math-

ematical modeling of real-world problems. Significant progress has been made in the theory of
impulsive fractional differential equations [28].

In this paper the following impulsive Initial Value Problem (IVP) of fractional order is consid-
ered:

Dq
∗x(t) = f(x), for t ∈ I = [0, T ], t ̸= tk, k = 1, 2, ..., 0 < q ≤ 1,

∆x|t=tk = Ik(x(t
−
k )), k = 0, 1, 2, ...

x(0) = x0,

(5)

where Ik : R → R, x0 ∈ R, 0 = t0 < t1 < ..., ∆x|t=tk = x(t+k ) − x(t−k ), x(t
+
k ) = limh↓0 x(tk + h)

and x(t−k ) = limh↑0 x(tk − h) represent the right and left limits of x(t) at t = tk, with a generally
nonlinear continuous function f : Rn → Rn.

In other words, the IVP is subject to some impulsive effects at fixed time instants (points of
jump). The IVP (5) should be read as follows:

� For t ̸= tk, k = 0, 1, ..., the solution is given by the equation Dq
∗x(t) = f(x);

� For t = tk, the solution x(t) jumps so that x(t−k ) = x(t) and x(t+k ) = x(t) + ∆x(tk);

� After a jump instant, tk, the solution is given by the following IVP: Dq
∗x(t) = f(x), for

tk < t < tk+1.

Due to the nonlinearity of f , the underlying system modeled by (5) may behave chaotically.
However, by choosing an adequate time partition t1, t2, ..., and impulses ∆x(tk), the chaotic be-
havior can be controlled. While chaos control is matured for integer-order impulsive systems today
[29], it is still relatively new in the fractional order settings (see e.g. [30]).

This kind of algorithm is useful in certain chemical and biological systems, electrical circuits,
particularly when system parameters are unaccessible, leading to the failure of the OGY method
[31] and other similar control strategies.

In this paper, aided by computer simulations, we show that there are more general impulsive-
like methods to suppress chaotic behaviors. Consequently, we show that chaos suppression can be
achieved with constant but different impulses applied to one or several system state variables. For
this purpose, by drawing a bifurcation diagram with impulses considered as bifurcation parameters,
we found relatively large connected subintervals of impulsive controls, where the suppression of
chaos can be realized.

The rest of the paper is structured as follows. In Section 2, a fractional-order variant of the
autonomous SCC is derived and a general impulsive algorithm to suppress the chaotic behavior is
described. Numerical results are presented in Section 3 and, finally, conclusions are drawn in the
last section.

2. Autonomous SCC model of fractional order and chaos suppression

For a fractional-order (0 < q ≤ 1) capacitor and inductor, the i−v relations, necessary for deriv-
ing the mathematical model of the current-controlled SCC of fractional order, are given respectively
as follows (see e.g. [32]):

iC(t) =C Dq
∗vC(t),

vL(t) =LDq
∗iL(t).
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Then, referring to the circuit presented in Fig. 1, based on a capacitor, an inductor and a
memristor system of fractional order q1, q2 and q3, respectively, Kirchhoff’s voltage law on the loop
gives

vC + LDq2
∗ iL −R iM = 0.

If one considers Kirchhoff's current law iM = −iL, and the equations of the memristive system
(4a)-(4b), then the mathematical model of the autonomous SCC of incommensurate fractional
order, (q1, q2, q3)

T , as a counterpart of the integer-order circuit presented in [1], can be derived as4

Dq1
∗ vC =

iL

C
,

Dq2
∗ iL = −

1

L
(vC + β iL − β x2iL),

Dq3
∗ x = −iL − αx+ iL x.

(6)

Using a dimensionless variables substitution: x1 := vC , x2 := iL and x3 := x, and letting C = 1,
L = 3, α = 0.6, as given in [1], system (6) can be transformed into the following dimensionless
form:

Dq1
∗ x1 = x2,

Dq2
∗ x2 = −

1

3
(x1 + βx2 − βx23x2),

Dq3
∗ x3 = −x2 − 0.6x3 + x2x3.

(7)

Remark 2. System (7) has the same form as its integer-order counterpart presented in [1], with the
only difference being Caputo’s fractional derivative. However, equations (4a)-(4b) of the memristive
system are adopted as defined for the integer-order system. Therefore, a more realistic approach
for fractional-order systems could be considered.

Now, consider the ideal memristor equations (1a)-(1b), (2), (3), and the window function f in
its linear window (where f(x) = 1, see Fig. 3). The following expression for memristor resistance
R, depending on the input voltage and time, can be deduced [25]:

R(t) =
(
Rq+1

in ∓ q(q + 1)kR∆

∫ t

0
(t− τ)q−1v(τ) dτ

) 1
q+1

,

where R∆ = Roff −Ron and Rin are some initial values.
Obviously, with this form of R, the fractional-order equations (7) become more complicated.

Therefore, due to the simplicity of the canonical form (7), only a simplified model is studied here.

Consider next the impulsive system (5) for the case of a chaotic system (7). The existence of
solutions (piecewise continuous functions satisfying (5)), was proved in e.g. [28, 34].

Generally, in stabilizing chaotic systems of integer or fractional order, it is based on adaptive
or feedback controls, justified by the Lyapunov stability. The designed impulses are variables
depending on the system dynamics at every time instant tk, and are applied at the same time
instants.

In this paper, we consider the case of impulses, denoted by ∆xi, applied periodically, but at
same or different time moments, under the following assumptions:

4In [33], the stability and dynamic behavior of the autonomous SCC are studied for the commensurate case.
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Figure 4: Bifurcation diagram of the autonomous SCC of fractional order (7).

� Impulses are applied to 1 ≤ N ≤ n variables xi, at time instants tik, i ∈ {1, 2, ..., N},
k = 0, 1, ...;

� The variable xi receives impulses ∆xi at the instants tik, where i ∈ 1, 2, · · · , N, k = 0, 1, · · · .
The impulses can be applied either simultaneously (i.e. tik is the same for all considered N

variable) or at different time instants (i.e. tik ̸= tjk if i ̸= j);

� Time interval I is equidistantly partitioned, but possibly differently, for each considered vari-
able xi, i ∈ {1, 2, ..., N}, so that tik+1 − tik = δxi for all k.

To the best of our knowledge, there are no studies to determine the required parameters for
this kind of impulsive problems of fractional order. Due to the commonly-known impossibility of
analytical derivations, ∆xi and δxi are determined numerically aided by computer simulations.

Conceptually, the impulsive problem (5) can be written as follows:

xi(t
i+
k ) = xi(t

i−
k ) + ∆xi after every δxi and all k, i ∈ {1, 2, ..., N}, N ≤ n, (8)

which means that after every δxi time interval, the variable xi, i ∈ {1, 2, ..., N}, is subject to an
impulsive change of ∆xi.

3. Numerical results

As numerical examples, consider system (7) for the non-commensurate case with q = (0.98, 0.99, 0.995)T

and β chosen nearby the coordinate of the point M, i.e. 1.43 (a Misiurewicz-like point), which
yields

D0.98
∗ x1 = x2,

D0.99
∗ x2 = −

1

3
(x1 + βx2 − βx23x2),

D0.995
∗ x3 = −x2 − 0.6x3 + x2x3.

(9)
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Its complex behavior can be seen from the bifurcation diagram in Fig. 4. With β = 1.43,
the system provides most complex chaotic dynamics. For this choice of β, the chaotic attractor
fills densely a subspace of the phase space (Fig. 5). In contrast, for the attractors corresponding
to different β values, there are some regions in the phase space which are never visited by the
underlying attractor. Therefore, chaotic attractors are “less” chaotic for β ̸= 1.43 (as is considered
in [1], for example).

The values of q1, q2, q3 have been chosen close to one, in order to retain as much as possible the
chaotic feature of its integer-order counterpart (as is well known, chaos tends to vanish once the
system order diminishes).

In order to verify the obtained results, phase plots and histograms (for the first state variable
x1) are shown, where transients have been neglected in phase plots. Impulse values are obtained
from the bifurcation diagram with impulses considered as bifurcation parameters and with a fixed
δx1. From this diagram, one can deduce the values of ∆x1 for which the system evolves along a
stable cycle.

The numerical integration of (7) was realized with the Adams-Bashforth-Moulton method for
fractional-order equations [35], with the step size h = 0.002, while the integration interval was set
as I = [0, 300], except for the case of δ = −0.00062 when a longer period of time is necessary to
eliminate transients.

For each variable xi, the time interval δxi is set as multiple of h, so that in the underlying
time partition ti0, t

i
1, ..., the distance between consecutive points tik and tik+1, k = 0, 1, ..., is δxi =

|tik+1 − tik| = mh, where m is a positive integer.

Remark 3. It should be mentioned that the obtained results here depend on the characteristics of
the numerical methods used to solve the underlying impulsive IVP of fractional order, and the step
size h. Based on extensive numerical simulations, it is realized that by the use of Adams-Bashforth-
Moulton’s method within the usual range of size h, for example (0.001, 0.004), the results remain

Figure 5: Chaotic attractor of the autonomous SCC (7) for β = 1.43.
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Figure 6: Bifurcation diagram of x1 for the autonomous SCC of fractional-order (7) using ∆x1 as bifurcation param-
eter, and some zoomed regions.

essentially unchanged. Another potential issue is the rounding errors, e.g. from the repeating
(recurring) decimals in (7), 1/3 = 0.33... (as deduced in [1]).

Next, the most significative results are presented for applying (negative and positive) impulses
to one, two and all variables of the system under control.

� First, consider the case of a single variable x1 (N = 1), in which the impulse ∆x1 is applied
at every δx1 = h, i.e. x1 is modified with ∆x1 in every integration step h. The bifurcation
diagram, which plots the relative maxima of x1 versus ∆x1, for ∆x1 ∈ ∆ = (−0.001, 0.008)
(Fig. 6)5, indicates the intervals where every applied value ∆x1 ensures chaos suppression.
As can be seen, there exists an interval BC, with B ≈ −6× 10−4 and C ≈ 4× 10−4, within
which there are some chaos suppression intervals (intervals for which ∆x1 ensures chaos
suppression), merging with chaotic intervals (where chaos is not suppressed). It resembles
a period-doubling bifurcations connected with a reverse bifurcation cascade of the logistic
map. For every ∆x1 outside the BC value interval, chaos can be suppressed. As expected,
at ∆x1 = 0 (no impulses), the system evolves chaotically. The probability to find impulses
∆x1 in ∆ such that the system behaves regularly, is more than 90% which is pretty large.

– With ∆x1 = −0.00062 (point A in the bifurcation diagram in Fig. 6), the chaotic
behavior is suppressed and the system evolves along a complicated higher-periodic stable
cycle, as shown in Fig. 7. Histogram highlights the fact that ∆x1 is chosen on the right
to a period-doubling bifurcation point.

– With ∆x1 = 0.0005 (point D in the bifurcation diagram in Fig. 6), the chaotic behavior
disappears and a stable cycle appears (Fig. 8). As for ∆x1 = −0.00062, the value
∆ = 0.0005 is chosen near a bifurcation point, as underlined by histogram’s peaks.

5Values outside this range for ∆x1 present no interest from the physical point of view. Also, values smaller than
−1× 10−3 determine system instability.
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Figure 7: Chaos suppression with impulses applied to a
single variable x1, where δx1 = h and ∆x1 = −0.00062
(point A in the bifurcation diagram in Fig. 6); a) Phase
plot; b-d) Time series; e) Histogram of x1 component; f)
Impulse time instants for x1 (sketch).

Figure 8: Chaos suppression with impulses applied to
a single variable x1, where δx1 = h and ∆x1 = 0.0005
(point D in the bifurcation diagram in Fig. 6); a) Phase
plot; b-d) Time series; e) Histogram of x1 component; f)
Impulse time instants for x1 (sketch).

– With ∆x1 = 0.001 (point E in the bifurcation diagram in Fig. 6), the chaotic behavior
is regularized, as shown in Fig. 9. The period of the stable cycle reduces.

– With ∆x1 = 0.002 (point F in the bifurcation diagram in Fig. 6), the chaotic behavior
is stabilized, as shown in Fig. 10. Similarly, the period of the stable cycle reduces.

� If one considers N = 2 variables, e.g. x1 and x3, with the corresponding impulses ∆x1 = 0.001
and ∆x3 = −0.002, applied every δx1 = 2h and δx3 = 5h moments respectively, one obtains
the stable cycle in Fig. 11.

� If one applies impulses ∆x1 = 0.004, ∆x2 = −0.001 and ∆x3 = −0.002 to all variables, every
δx1 = 8h, δx2 = 5h and δx3 = −0.002 moments respectively, one obtains the stable cycle
shown in Fig. 12, which resembles the cycle obtained in the above case, with N = 2 variables.

As can be seen from the presented results, either positive or negative impulses can be applied
to suppress the chaotic behavior.

Remark 4. In [36], the stable regions controlling chaos in Chua’s oscillator using impulsive control
are connected. In the present case here, there are stable subintervals for ∆x1, where chaos suppres-
sion can be realized, interweaving with unstable subintervals, where chaos cannot be suppressed (see
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Figure 9: Chaos suppression with impulses applied to a
single variable x1, where δx1 = h and ∆x1 = 0.001 (point
E in the bifurcation diagram in Fig. 6); a) Phase plot; b-
d) Time series; e) Histogram of x1 component; f) Impulse
time instants for x1 (sketch).

Figure 10: Chaos suppression with impulses applied to a
single variable x1, with δx1 = h and ∆x1 = 0.002 (point
F in the bifurcation diagram in Fig. 6); a) Phase plot; b-
d) Time series; e) Histogram of x1 component f) Impulses
time instants for x1 (sketch).

for example, based on the point G in Fig. 6 where ∆1 = 5.987× 10−4, a stable cycle with a higher
period is obtained as shown in Fig. 13).

4. Conclusion and discussion

We have shown that the chaotic behavior of a simplest autonomous SCC of non-commensurate
fractional order can be suppressed by applying periodic impulses. The impulse values can be
different and can be applied to one or several state variables.

To determine the impulses, bifurcation diagrams can be utilized, with impulses considered as
bifurcation parameters.

The difficulty to realize the impulsive control (5) in electronic circuit lies in the fact that a
direct and impulsive change of the state variables is required. Unlike other state feedback control,
the control signal does not act onto the system equation, namely the circuit in concern. Taking a
capacitor in a circuit as example, to change its voltage as specified by (5), it requires an injection of
electrons leading to a sudden change of the voltage, without going through the circuit. This is not
generally on-shelf available, but some models of impulsive electronic devices have been suggested
[37] and it is technically possible in the light of physics. For example, a single electron tunneling
junction can work as a capacitor, and based on the Coulomb blockade, a single electron tunneling
through the barrier can cause a sudden voltage jump at the junction capacitor. In contrast, for
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Figure 11: Chaos suppression with impulses applied to
two variables, x1 and x3, with δx1 = 2h, δx3 = 5h,
∆x1 = 0.001, ∆x3 = −0.002; a) Phase plot; b-d) Time
series; e) Histogram of the x1 component f) Impulse time
moments for x1 and x3 (sketch).

Figure 12: Chaos suppression with impulses applied to
all variables, x1, x2 and x3, with δx1 = 8h, δx2 = 5h,
δx3 = 5h, ∆x1 = 0.004, ∆x3 = −0.001, ∆x3 = −0.002;
a) Phase plot; b-d) Time series; e) Histogram of the x1

component f) Impulse time moments for x1, x2 and x3

(sketch).

biological systems, which have also been frequently modeled by fractional differential equations
[38, 39], it is relatively easier to realize the impulsive control (5) by external injection and operation
without affecting other states. This line of thinking will be further investigated in the future.
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