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Abstract

In this paper, a periodic parameter-switching scheme is proposed for synthesizing a large class
of hyperbolic attractors of continuous-time and autonomous dissipative chaotic systems depending
linearly on a single real bifurcation parameter. It is illustrated by numerical simulations that a wide
range of hyperbolic attractors can be obtained by this new scheme. The scheme can also be considered
as an effective way for control and anticontrol of chaos.
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1 Introduction

A large class of chaotic systems can be represented by a continuous-time autonomous dissipative model
depending linearly on a single real bifurcation parameter, expressed in the general form of the following
Initial Value Problem:

S : ẋ = fp(x), x(0) = x0, (1)

where fp is an Rn-valued function of variable x = (x1, x2, . . . , xn)
T ∈ Rn, with a bifurcation parameter

p ∈ R and n ≥ 3, and has the expression

fp(x) =g(x) + pAx (2)

in which g : Rn −→ Rn is a continuous-time nonlinear function, A is a real constant n×n matrix, x0 ∈ Rn,
and t ∈ I = [0,∞).

Throughout, the existence and uniqueness of solutions are assumed, and it is supposed that there exist
only hyperbolic equilibria.

Based on the bifurcation parameter p, different attractors can exist. However, from a practical design
point of view, it is sometimes difficult to generate a specific attractor by a particular parametric value of
p on a physical device. Hence, it is the objective of this paper to propose a simple scheme to implement
p so that some desirable attractors can be synthesized.

The scheme is to use a time-varying, or more preciously, periodically switching parameter according to
some design rules. It will be demonstrated, empirically by various experiments, that a desired attractor
can be duly obtained by the proposed switching scheme. Similarly to other control methods suggested in
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[1], [7], [20], this switching scheme can also be considered as a kind of chaos controller or anti-controller
for a given system.

The organization of the paper is as follows. In the next section, the proposed parameter-switching
scheme for synthesizing attractors is described, along with two conjectures which are fully supported by
intensive simulations as further explained in Sect. 3. Finally, in Sect. 4, some concluding remarks are
given and major issues for future work are discussed.

2 Synthesis of Attractors

Notation 1 Consider the Initial Value Problem (1). Let A be the set of all global attractors depending on
parameter p, including attractive stable fixed points, limit cycles and chaotic (possibly strange) attractors.
Let also P ⊂R be the set of the corresponding admissible values of p.

Due to the assumed dissipativity, A is non-empty (see e.g. [17]). It then follows naturally that for
the considered class of systems, a bijection may be defined between the sets P and A, although A is
somewhat restrictive. Thus, giving any p ∈ P, a unique global attractor is specified, and vice versa.

Remark 2 The bijection between P and A is somehow connected with the known paradigm in the dynam-
ical systems of complex variables. It is said that the Mandelbrot set is a sort of book with infinitely many
pages, where each page is a picture of a Julia set corresponding to a value of the parameter identifying a
point of the Mandelbrot set [19].

In this paper, computer simulations are used as the major analytical tool. Hence, the ω-limit set
(actually, its approximation) of the resultant trajectory is considered (see Appendix) which, as usual [9],
is considered after neglecting a sufficiently long period of transients.

In order to have a measure for the “success” on attractor synthesis, it is essential to compare the
numerically obtained attractors. However, the size and the shape of an attractor usually change with the
control parameter, particularly when a nonlinear system is studied. Moreover, its geometric structure can
be very complicated. Therefore, it is extremely difficult, if not impossible, to determine the position of
a chaotic attractor in the phase space. That also appears to be true even for an equilibrium point or a
periodic trajectory in general.

Recognizing the difficulties in comparing attractors, a practical (nonstandard but useful) criterion is
introduced in the following:

Criterion 3 Two attractors are considered to be identical if
i) their geometrical forms in the phase space (almost) coincide;
ii) the sense of the motion is preserved.

Criterion 3 is a suitable modification and adaptation of the known concept of topological equivalence
(see e.g. [12]), for practical use rather than for theoretical rigor.

This geometrical identity concept considered in Rn , based on both phase-space and time-series repre-
sentations, serves well for computer graphic inspection of attractive fixed points and limit cycles. However,
the situation becomes complicated for chaotic attractors (see e.g. [8]). In this case, the almost identity of
two chaotic attractors is justified by a geometric coincidence of their branched manifolds , known as knot
holders (see Appendix and [22]) near the preserved sense of motion on the trajectories. In addition, phase
portraits, histograms and Poincaré sections are all used as supplements for the verification of the identity
of two chaotic attractors.
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Remark 4 Using Criterion 3, the invariance of branched manifolds under the changes of control-parameter
values is avoided (in fact, this entire work relies on the variance on the parameter), and thus, the injectiv-
ity between P and A is not violated. Also, the use of some inherent tools of topological characterization1

or dimensions related to the comparison of attractors (see, e.g., [5], [8], [12], [16], [17]) can be avoided.

Notation 5 Let PN = {p1, p2, . . . , pN} ⊂ P be a finite ordered subset of P containing N different values
of p, which determines the set of attractors AN = {Ap1 , Ap2 , . . . , ApN

} ⊂ A.

Considering the systems modeled by (1), the following conjecture (the first main result of this paper)
can be stated:

Conjecture 1. For any finite set AN of N(≥ 2) attractors, corresponding to PN there exists an
attractor A∗ generated by (1) with switching parameter p in PN depending upon certain rules. Moreover,
A∗ ∈ A , i.e. A∗ is an attractor corresponding to a specific value p, which can be precisely determined.

Remark 6 The above conjecture seems to have its reverse form: Any attractor Ap ∈ A may be synthesized
from a finite set of attractors of A.

Next, consider a partition of I, I = ∪i∈N∗ [ti−1, ti),with t0 = 0, such that ti = jh, for i, j ∈ N, where
h is a positive real number which will be selected empirically, and let p be determined by a piecewise
continuous function ψ : I −→ PN , defined by

ψ(t) = pk for t ∈ [ti−1, ti), i ∈ N∗, k ∈ {1, 2, . . . , N}, pk ∈ PN . (3)

Thus, a trajectory of system (1) can be partitioned, as depicted for a particular case in Fig. 1 (a),
based on the switching scheme described in Fig. 1 (b). In all of our simulations, the system trajectories
are numerically obtained based on a fixed step-size integration with the integration step-size h.

The switching synthesis rule in Conjecture 1 can be defined as the following (m1 +m2 + ... +mN )h
-periodic sequence:

[m1pφ(1), m2pφ(2), . . . ,mNpφ(N)], (4)

where the weights mi are some positive integers and φ permutes the subset {1, 2, . . . , N}.
Scheme (4) has the following significance: the numerical method will integrate (1) with p = p

φ(1)
in

the first m1 steps, and then with p = p
φ(2)

in the next m2 steps, and so on, until the last Nth subinterval.
The cycle is then repeated so that a periodic parameter-switching scheme is obtained.

For example, the sequence [7p2, 3p1, 4p3] (see Fig. 1 (b)) implies that, for the first 7 integration steps,
p = p2, and then for the next 3 integration steps, p = p1, and for the last 4 steps, p = p3 . After that, the
cycle is repeated again, i.e., [7p2, 3p1, 4p3] should be understood as being the following periodical sequence:

7p2, 3p1, 4p3, 7p2, 3p1, 4p3, 7p2, 3p1, 4p3, . . . .

As justified with the averaging system and demonstrated by the simulation results, Conjecture 1 is
reformulated in the following more practical form, so that parameter p can be estimated.

Conjecture 2. For any finite set of attractors AN ∈ A, there exists a set of N positive integers,
mi, i = 1, 2, · · · , N , such that, based on the integration scheme (4), a synthesized attractor A∗ can be

1For example, considering the shape of an attractor, it is possible to have two attractors possessing the same shape and
however being different in the sense of Criterion 3.
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(a)

(b)

Figure 1: Sketch of the scheme (3), (4), partition interval for N = 3 for the case [7p2, 3p1, 4p3]; m1 = 7,
m2 = 3 and m3 = 4. a) trajectory partition; b) parameter variance vs time.
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obtained, which is identical (in the sense of Criterion 3) to an attractor Ap ∈ A with p being given by
the following relation:

p =

N∑
k=1

pφ(k)mk

N∑
k=1

mk

. (5)

For example, referring to the bifurcation diagram of Chen’s system, given in Fig. 2, it is possible to
obtain a chaotic attractor A∗ identical to Ap, with p = 24.532 based on the switching sequence, [1p1, 1p2]
with p1 = 23.014 and p2 = 26.08, following (5) (p = (p1 + p2)/2 = 24.532). Similarly, one can have a
synthesized periodic attractor identical to Ap, with p = 26.083 if [2p1, 1p2] is used with p1 = 25.75 and
p2 = 26.25.

Figure 2: Bifurcation diagram of x1 with P = [22.50, 27.50] for Chen’s system.

Remark 7
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1. There is only one pseudo-identity in synthesizing chaotic attractors if p given in (5) is an irrational
number due to numerical errors (see Table 4). In this case, small difference can appear in between
the two attractors, A∗ and Ap.

2. Because of the resemblance of the relation (5) to a weighted average formula, one may consider the
synthesized attractor A∗ as an averaged attractor, the value p as an averaged value, and mk as
weights.

3. Equation (5) represents an affine combination because one may write p =
N∑

k=1

αkpφ(k) with αk =

mk

/
N∑

k=1

mk, such that
N∑

k=1

αk = 1. Therefore, by the nature of this algorithm, A may be viewed as a

vector space and P as a field, so any element (vector) of A could be considered as being synthesized
from a set of a finite number of vectors in A, with coefficients in P.

4. For any ordered set PN = {pmin, . . . , pmax}, using scheme (4) the resultant averaged p, given by (5),
is located inside the interval [pmin, pmax], i.e., pmin ≤ p ≤ pmax. Thus, if PN is chosen within a
chaotic (or periodic) band in the bifurcation diagram, the resultant attractor will also be chaotic (or
periodic), while if PN is chosen within disjoint bands the resultant attractor could be of any type.
In addition, the synthesized attractor A∗ has a well-defined position in the parameter space, i.e.,
‘inside’ the set of attractors Apmin , . . . , Apmax , ordered in the parameter space (bifurcation diagram)
by the order induced from P being close to one of the attractors Apk

with corresponding values
of mk. For example, if N = 2, and p1 and p2 are chosen from the bifurcation diagram, then the
synthesized attractor A∗ is situated in the parameter space between the attractors Ap1 and Ap2 . Thus,
if m1 > m2, then A∗ is closer to Ap1 . Consequently, a density-like property of the attractors on A
could be observed: between any two arbitrarily close attractors, there always exists another attractor.

5. Following Remark 7.4 above, even if the switch of p is relatively large, A∗ will remain inside the
range Apmin

, . . . , Apmax
. However, for critical values of m (see Remark 3 below) the identity between

A∗ and Ap may be compromised.

6. Generally, for a fixed initial condition x0, (5) is not ’commutative’, i.e. [m1p1,m2p2] and [m2p2,m1p1]
generally give different attractors.

3 Numerical Results and Applications

In this section, it is to demonstrate the synthesis of a particular attractor based on the switching scheme
described in the last section. The scheme has been applied to three different chaotic systems, namely the
Chen’s system, the Lorenz system and the Rössler system.

The dynamical equations of these three systems are first recalled, as follows:
Chen’s System: [4]

ẋ1 = a(x2 − x1),
ẋ2 = (p− a)x1 − x1x3 + px2,
ẋ3 = x1x2 − bx3,

(6)

with parameters a = 35 and b = 3, while p is chosen as the control parameter here.
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Referring to (2), one has

g(x) =

 a(x2 − x1)
−x1x3 − x2
x1x2 − cx3

 , A =

 0 0 0
1 0 0
0 0 0

 .

Lorenz System:
·
x1 = a(x2 − x1),
·
x2 = x1(p− x3)− x2,
·
x3 = x1x2 − cx3,

(7)

with a = 10 and c = 8/3, and p again is the control parameter. Here,

g(x) =

 a(x2 − x1)
−x1x3 − x2
x1x2 − cx3

 , A =

 0 0 0
1 0 0
0 0 0

 .

Rössler System:
·
x1 = −x2 − x3,
·
x2 = x1 + ax2,
·
x3 = b+ x3(x1 − p),

(8)

with a = b = 0.1, and p is the control parameter and

g(x) =

 −x2 − x3
x1 + ax2
b+ x3x1

 , A =

 0 0 0
0 0 0
0 0 −1

 .

Based on the parameter-switching scheme (4), it is possible to synthesize any attractor of the considered
systems. Here, the switching scheme [m1p2,m2p1,m3p3] is applied to the three different systems while
the simulation settings and results are summariized in Table 1.

System Switching scheme p1 p2 p3 Averaged value p
Chen [7p2, 3p1, 4p3] 23.014 24 32.0195 26.080
Lorenz [8p2, 7p1, 2p3] 10 125.5 130 78.4706
Rössler [2p2, 5p1, 3p3] 18 25 31 23.300

A∗

periodic
chaotic
chaotic

Graphical results
Fig. 3
Fig. 4
Fig. 5

Table 1: Testing cases for synthesizing attractors with scheme [m1p2,m2p1,m3p3]. The simulation time
T was set to 75 and the integration step size h = 0.001.

The simulation time T is chosen empirically, so that it was large enough to confidently verify the
results but the presented images have relatively small T in order to obtain clear pictures. Also, in most
cases, the transients were neglected. In addition, special attention is paid to x0 in order to focus on the
same attractor.

The averaged value p is computed by (5), for example, considering the Chen attractor, p = (7× p2 +
3× p1 + 4× p3)/(7 + 3 + 4) = 26.080.

In order to justify the identity of the obtained attractors, the phase portraits and the histograms are
both provided. For the case of having a synthesized chaotic attractor, the Poincaré sections are also
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obtained for comparison. As reflected by the simulation figures, the synthesized attractors are more or
less identical to the one given by the averaged value. Some additional remarks are given as follows:

Remark 8

1. Better synthesis results are observed in Chen and Lorenz systems, while small derivation is noticed
in the case of the Rössler system. It may be due to the sensitivity of the computed results to the
integration time-steps in the Rössler system as pointed out in [21].

2. Because of the stiffness or strong dependence on the integration step size in some cases, some tra-
jectories of A∗ present ‘corners’ especially near the peaks, where the performances of any numerical
method are fully stressed. In our tests, the Rössler system presents this phenomenon (see Fig. 5 (b)).
However, even in this case, the two attractors A∗ and Ap are well matched.

The solution would be more accurate if smaller step size, or adaptive step size or multistep numerical
methods, are used. It should also be noticed that a special numerical method [6] is utilized for the
Chen system due to its stiffness.

3. Let mk = max{m1, . . . ,mN}. If mk has a relatively large value (10 in our experiments) then A∗ still
remains in a relatively small neighborhood of Ap but it presents some oscillations (for example, the
result with [7p2, 3p1, 10p3] is depicted in Fig. 6). If this value exceeds 50, say, then A∗ moves closer
to the attractor corresponding to pk and a larger deviation in the resultant attractor is expected.
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Figure 3: Synthesized limit cycle A∗ from the Chen system, with [7p2, 3p1, 4p3], p1 = 23.014, p2 = 24,
p3 = 32.0195, T = 75 and h = 0.001. a) Phase portraits of A∗ and Ap (p = 26.080), superimposed;
b) Histogram of A∗ and Ap, superimposed.
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Figure 4: Synthesized the chaotic Lorenz attractor A∗, with [8p2, 7p1, 2p3], p1 = 103, p2 = 125.5, p3 = 130,
T = 75 and h = 0.001. a) Phase portrait of A∗ and Ap (p = 78.4706), superimposed; b) Histogram of A∗

and Ap, superimposed; c) Poincaré section of A∗ and Ap, superimposed.
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Figure 5: Synthesized limit cycle A∗ from the Rössler system, with [2p2, 5p1, 3p3], p1 = 18, p2 = 25,
p3 = 31, T = 75 and h = 0.001. a) Phase portrait of A∗ and Ap (p = 23.3), superimposed; b) A zoom-in
window of the phase portrait c) Poincaré section of A∗ and Ap, superimposed; d) Histogram of A∗ and
Ap, superimposed.
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Figure 6: Phase portrait of A∗ and Ap synthesized from the Chen system with [7p2, 3p1, 10p3], p1 = 23.014,
p2 = 24, p3 = 32.0195, T = 75 and h = 0.001.

3.1 Control and Anticontrol of Chaos

The proposed scheme can be adopted as an approach for chaos anticontrol and control. For practical
reasons, we consider N = 2, i.e. the switch is only between two parameter values: p1 and p2. In this case,
the possible situations which could arise are presented in Table 2.

chaos+chaos=chaos

chaos/order+order/chaos=chaos/order

order+order=order

order+order=chaos (anticontrol)2

chaos+chaos=order (control)

Table 2. The possible combinations between order and chaos

Because of the empirical character of the switch method, its utilization is more theoretical than prac-
tical. However, the switching scheme gives some new interpretations to the control and anticontrol of
chaos.

2This kind of anticontrol situation is a variant of Parrondo’s paradox [13], which states the following strategy: los-
ing+losing=winning, i.e., chaos+chaos=order (see [1] and [20], where variants in the discrete case are presented).
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3.2 Anticontrol of Chaos

Consider a dynamical system modeled by (1)–(2), with p1 and p2 corresponding to regular motions (i.e.,
Ap1 and Ap2 are attracting fixed points and/or stable limit cycles). Applying scheme (4) with adequate
(empirically chosen) m1, m2, and h, a chaotic attractor A∗ may be synthesized, where the corresponding
value p of Ap is given by (5), as confirmed by the following experiments.

For comparison, in all the presented results below, the time series of A∗ (the corresponding system
being denoted by S) and his phase portraits are drawn in blue, while the phase portraits corresponding to
Ap are drawn in red. The systems corresponding to p1 and p2 are denoted by S1 and S2, and their time
series being depicted with red and green curves, respectively.

3.2.1 Chen System

To better understand the way in which scheme (4) behaves, the bifurcation diagram of state variable x1
given in Fig. 2 is referred.

According to the affine property mentioned in Remark 7.4, it is possible to synthesize an attractor in
between two single intervals from which p1 and p2 are chosen. For example, let p1 = 23.014 and p2 = 26.05
correspond to two periodic attractors (Fig. 2), with their time series being depicted in Fig. 7 (a). The
relatively large blue band in the bifurcation diagram (Fig. 2) indicates that one may obtain the expected
chaotic attractors corresponding to a relatively large p-interval, between p1 and p2.

Now, letting m1 = 1 and m2 = 1, and using scheme [1p1, 1p2], a chaotic attractor is indeed obtained.
By (5), one has p = (p1+p2)/2 = 24.532 which, taking into account also the bifurcation diagram, signifies
a chaotic attractor. Taking integration step size h = 0.001 with T = 75, the time series, phase portrait
and Poincaré section of the synthesized results, are shown in Fig. 7 (a)–(c), respectively.

For comparison, the phase portrait and Poincaré section of the attractor Ap are also drawn in Fig. 7 (b)
and (c), respectively. It can be clearly observed that the two attractors A∗ and Ap are identical in the
sense of Criterion 3.

3.2.2 Lorenz System

Selecting p1 = 93 and p2 = 100, which correspond to two different periodic attractors (as drawn in red and
in green respectively in Fig. 8 (a)), a chaotic attractor can be duly obtained by using scheme [1p1, 1p2],
with h = 0.001 and T = 75, as shown in Fig. 8 (a). Similarly, the synthesized attractor is identical to the
one with p given by (5), p = 96.5, as shown in Figs. 8 (b) and (c).

3.2.3 Rössler System

The switching scheme is chosen with p1 = 6 , p2 = 12.5, m1 = m2 = 1 and [1p1, 1p2], and applied to
the Rössler System. The integration step is modified to be h = 0.002, and the final simulation time is
T = 200. Due to the sensitivity of the computed results to the integration time-steps in the Rössler system
[21], some small differences between attractors A∗ and Ap can be seen in Fig. 9. However, it can still be
concluded that the synthesized chaotic attractor is well matched by the one generated by (5) with p = 9.25.

The results are depicted in Table 3.
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Switching Averaged Simulation Integration Graphical
System Sequence p1 p2 value (p) time (T ) step (h) results
Chen [1p1, 1p2] 23.014 26.05 24.532 75 0.001 Fig. 7
Lorenz [1p1, 1p2] 93 100 96.5 100 0.001 Fig. 8
Rössler [1p1, 1p2] 6 12.5 9.25 200 0.002 Fig. 9

Table 3. Anticontrol of chaos using the switching scheme [p1, p2].

3.3 Control of Chaos

Based on the same concept of synthesis, two values of p1 and p2, both corresponding to chaotic behaviors,
with a particular choice of m1, m2 and h, are considered. The synthesized attractors could present regular
motions. The three typical chaotic systems studied above are once again considered here.

3.3.1 Chen System

Based on (6), for p1 = 25.75 or p2 = 26.25, from the bifurcation diagram in Fig. 2, chaotic attractors are
obtained. Assuming m1 = 2 and m2 = 1 and using the switching scheme [2p2, 1p1] with integration step
h = 0.01 and T = 75, the chaotic attractor corresponding to p = (2 × 26.25 + 25.75)/3 = 26.083 is duly
synthesized, as shown in Fig. 10.

3.3.2 Lorenz System

The result for the Lorenz system is depicted in Fig. 11. Choosing p1 = 90 and p2 = 96 with m1 = m2 = 1,
h = 0.001, T = 75, and using the scheme [1p1, 1p2], the resulting attractor corresponds to a stable limit
cycle with the calculated value p = 93.

3.3.3 Rössler System

For the Rössler system, the control was achieved by applying the scheme [1p1, 2p2] with p1 = 12.5, p2 = 6,
h = 0.01 and T = 800. The results, with p = 8.1(6), are shown in Fig. 12, which clearly confirms the
statement given in Conjecture 2 (see also Remark 7.1).

The results are summarized in Table 4.

Switching Averaged Simulation Integration Graphical
System Sequence p1 p2 value (p) time (T ) step (h) results
Chen [2p2, 1p1] 25.75 26.25 26.083 75 0.01 Fig. 10
Lorenz [1p1, 1p2] 90 96 93 75 0.001 Fig. 11
Rössler [1p1, 2p2] 12.5 6 8.1(6) 800 0.01 Fig. 12

Table 4. Chaos control using the switching scheme [m1p1,m2p2].
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Figure 7: Synthesized the chaotic Chen attractor A∗ with [1p1, 1p2], p1 = 23.014, p2 = 26.05, T = 75
and h = 0.001. a) Time series; b) Phase portrait of A∗ and Ap (p = 24.532), superimposed; c) Poincaré
section of A∗ and Ap, superimposed.
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Figure 8: Synthesized the chaotic Lorenz attractor A∗, with [1p1, 1p2], p1 = 93, p2 = 100, T = 75 and
h = 0.001. a) Time series; b) Phase portrait of A∗ and Ap (p = 96.5), superimposed; c) Poincaré section
of A∗ and Ap,superimposed.
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Figure 9: Synthesized the chaotic Rössler attractor A∗, with [1p1, 1p2], p1 = 6, p2 = 12.5, T = 200 and
h = 0.002. a) Time series; b) Phase portrait of A∗ and Ap (p = 9.25), superimposed; c) Poincaré section
of A∗ and Ap, superimposed.
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Figure 10: Synthesized limit cycle A∗ from the Chen system, with [2p2, 1p1], p1 = 25.75, p2 = 26.25,
T = 75 and h = 0.001. a) Time series; b) Phase portrait of A∗ and Ap (p = 26.083), superimposed;
c) Histogram of A∗ and Ap, superimposed.
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Figure 11: Synthesized limit cycle A∗ from the Lorenz system, with [1p1, 1p2], p1 = 90, p2 = 96.25, T = 75
and h = 0.001. a) Time series; b) Phase portrait of A∗ and Ap (p = 93), superimposed; c) Histogram of
A∗ and Ap, superimposed.
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Figure 12: Synthesized limit cycle A∗ from the Rössler system with [1p1, 2p2], p1 = 12.5, p2 = 6, T = 800
and h = 0.01. a) Time series; b) Phase portrait of A∗ and Ap (p = 8.1(6)), superimposed; c) Histogram
of A∗ and Ap, superimposed.
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Remark 9

1. The scheme is workable for chaos control (or anticontrol) only if there exists two disjointed chaotic
(or periodic) windows, separated by at least one periodic (or chaotic) window.

2. It is possible to obtain a desired attractor Ap, starting from two given p1 and p2. For this purpose,
one has to solve the equation (m1p1 +m2p2)/(m1 +m2) = p, the unknowns being m1 and m2.

3. To further elaborate, let us consider the Lorenz system (7) formulated as follows:

·
x1 = a(x2 − x1),
·
x2 = (p1 + u)x1 − x1x3 − x2,
·
x3 = x1x2 − bx3,

(9)

where u is the parameter-perturbation to be injected.

For chaos control, assuming that a chaotic attractor is present with the parameter value p = p1, it
is possible to design a periodic pulse perturbation on parameter p1 using u with amplitude (p2 − p1),
having m1 off- and m2 on-cycles. The resultant p is then governed by (5). As a result, a periodic
or a fixed attractor can be obtained, as demonstrated in Fig. 11.

The same idea could be applied to anticontrol of chaos, where p = p1 corresponds to a periodic or
fixed-point attractor, and the control signal is again a periodic pulse with amplitude (p2−p1), having
m1 off- and m2 on-cycles. The anticontrol effect is exactly equivalent to the result obtained in Fig. 8.

4 Conclusions and Discussion

In this paper, a close relationship between the system parameter and its corresponding attractor, conse-
quently the “synthesis of attractors”, has been explored and analyzed.

For a chaotic system depending on a single real parameter, based on the conjectures given in this
paper which are supported by intensive simulations, it is concluded that every attractor depending on the
parameter p can be synthesized by the proposed periodic parameter switching scheme.

Moreover, this relationship suggests a symbolic interpretation of any attractor generated by the pro-
posed scheme based on a sequence of parameters. Thus, in view of the scheme, an attractor could be
described by an infinite number of periodic symbolic notations (even when the attractor is chaotic!). A
relevant study, also based on symbolic sequences but for discrete maps, was recently carried out in [24].

It should be emphasized that, to our knowledge, existing analytic techniques are unable to be applied
to explain the presented results. In this study, a large variety of parameters are allowed to use, and
it simply violates the basic assumption of having small parameter and variations in the typical existing
theoretical methods. Certainly, a rigorous proof of the proposed scheme is in order, which will be further
pursued in the near future.
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Appendix: Basic Concepts and Notions

Since the paper mostly deals with attractors of dynamical systems, some relevant concepts and notation,
including semiflow, trajectory, global and local attractors, ω-limit set, branched manifolds, etc., are de-
fined here for convenience. A more detailed background can be referred to the cited references, or [18].

Definition 1 A map Φ : Rn × I −→ Rn is a semiflow on Rn, if
(i) Φ(0, x) = x, x ∈ Rn;
(ii) Φ(t+ s, x) = Φ(t,Φ(s, x)), t, s ∈ I;
(iii) the map (t, x) 7→ Φ(t, x)is continuous.

System (1) describes a semiflow.

Definition 2 For any x ∈ Rn, the positive trajectory Γ(x) through x is Γ(x) =
∪

t∈I Φ(t, x).

For simplicity, the term trajectory has been used.

Definition 3 A global attractor of S is a compact set composing of all bounded global trajectories of
system (1) (see [16]).

The study of global attractors (also known as ‘global minimal B-attractor’, ‘global uniform attractor’ or
‘maximal attractor’ [16]) is a major research topic in dynamical systems, in particular within the context
of PDEs (see e.g. [23]). From the definition, a global attractor contains all the dynamics evolving from all
possible initial conditions. In other words, it contains all solutions, including stationary solutions, periodic
solutions, as well as chaotic attractors, relevant to the asymptotic behaviors of the system.

Definition 4 A local attractor is a compact set, invariant under f , which attracts its neighboring tra-
jectories (see e.g. [14][15]).

A global attractor is hence considered as being composed of the set of all local attractors, where
each local attractor only attracts trajectories from a subset of initial conditions, specified by its basin of
attraction. Therefore, for a fixed parameter p, different local attractors may be obtained depending on
the choice of the initial condition x0, in contrast to the uniqueness of the case of a single global attractor.

For example, if one considers the Lorenz system with p = 2.5, there are three local attractors: the
origin (saddle) and two symmetrical fixed points (sinks) X1,2(±2, ∓2, 1.5). In some cases, a unique local
attractor may also be the global one. For example, when p = 28, there exists only a single local attractor,
which is a global attractor too (known as the Lorenz strange attractor).

Definition 5 The ω-limit set of a trajectory through x ∈ Rn is given as ω(x) = ∩s≥0 ∪t≥s Φ(t, x).

In a simplified version, the branched manifold defines the topological organization of all the unstable
periodic trajectories which it supports [2][3][10][11]. As an example, the Lorenz branched manifold is
shown in Fig. 13.
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Figure 13: Sketch of the branched manifold of the Lorenz System.
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