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Abstract

The well known synchronization method of Fujisaka and Yamada is adapted
to a particular class of piece wise continuous dynamical systems. We give
su¢ cient conditions for the underlying initial value problems, in order to
de�ne dynamical systems. For this purpose the Filippov regularization is
used, the discontinuous initial value problem being switched into a di¤erential
inclusion. A generalized derivative for the considered class of functions is
introduced.



0.1 Introduction

Di¤erential equations with discontinuous right-hand side occur in many real
problems and are widely used as simpli�ed mathematical models of physi-
cal systems although the initial value problem (i.v.p.) need not have any
classical solutions. Sometimes physical laws are expressed by discontinuous
functions, for example a discontinuous dependence of the friction force on the
velocity in the cases of dry friction, oscillating systems with combined dry
and viscous damping, elasto-plasticity, electrical circuits, forced vibrations,
brake processes with locking phase, control synthesis of uncertain systems
etc. (see e.g. [Butenin et al., 1987; Deimling, 1992; Popp & Stelter, 1990;
Popp et al., 1995; Rumpel, 1996] and their references).
In this paper we consider piecewise continuous dynamical systems, we

called switch systems, modeled by the following autonomous i.v.p.

:
x(t) = f (x(t)) :=
g(x(t)) +

Pn
i=1 �i sgn (xi(t)) e

i;
x(0) = x0; t 2 I = [0;1); �i 2 R;

(1.1)

where f and g are vector-valued functions f; g : Rn ! Rn (g being con-
sidered continuous with respect to state variable x), and ei denotes the i-th
canonical unit vector in Rn.
The right-hand side of i.v.p. (1.1) is discontinuous with respect to the

state variable x, due to the sign functions. Since the system is autonomous,
we can assume, without loss of generality, that the initial condition is given
at t = 0.
Our �rst goal is to �nd the assumptions on which the class of the i.v.p.

(1.1) de�nes a dynamical system (d.s.). The second purpose is to explore the
possibility to synchronize two such switch d.s. with chaotic motion. Using
the computational aspects of the system behavior (the so called numerical
dynamics), we �nd the maximum Lyapunov exponent, one of the powerful
tool to diagnose whether or not the behavior is chaotic1 (see [Lyapunov,
1907] or [Oseledec, 1968] for theory and [Benettin et al., 1976; Eckmann &
Ruelle, 1985; Parker & Chua, 1989; Wolf et al., 1985] for numerical methods
to �nd Lyapunov exponents for continuous d.s.). In purpose, a new concept
of derivative for our class of functions f de�ned in (1.1) is introduced.
In [Kunze, 2000], the Lyapunov exponents for discontinuous i.v.p. are

treated using the so called cocylces, instead of the linearization of i.v.p.,

1It was proved that for any de�nition of chaos, there may always be some �clearly�
chaotic systems which do not fall under that de�nition (see [Brown & Chua, 1996]. How-
ever, we consider in this paper the de�nition given by Gulik [Gulik, 1992]: if the largest
Lyapunov exponent is positive, then the behavior of the system is considered to be chaotic.
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while in [ Müller, 1995] the required linearized equations are supplemented
by certain transition conditions at the discontinuities points.
One of the surprising fact about the chaotic systems (continuous or not)

is that they can be synchronized. This refers to the tendency of two or more
systems, which are coupled together, to undergo closely related motions.
Synchronization between continuous chaotic systems has been the subject of
many studies over the last few years. The most of these approaches uses the
Lyapunov exponents or Lyapunov functions (see e.g. [Alligood et al., 1997;
Aswin et al., 1996; Brown & Rulkov, 1997; Kapitaniak, 1993; Kapitaniak
& Thylwe, 1996; Rumpel, 1996; Schuster et al. 1986; Fujisaka & Yamada,
1983; Wu & Chua, 1994]; in [Rilkov et al., 2001] a numerical analysis study
including double-valued functions is presented). In this paper the so called
one-to-one coupling of Fujisaka and Yamada method [Fujisaka & Yamada,
1983] was adapted to synchronize two identical switch d.s. modeled by i.v.p.
(1.1).
The structure of the paper is the following: in section 2 notions as gener-

alized derivative, switch dynamical systems, are introduced; in section 3 dif-
ferential inclusions, Filippov solutions, su¢ cient conditions to de�ne switch
d.s. and numerical integration of di¤erential inclusions (namely the explicit
Euler method) are presented; in section 4, the method to �nd the maximum
Lyapunov exponent for continuous d.s. are adapted to the case of switch d.s.
and in section 5 the synchronization theorem for the continuous case is used
to synchronize switch d.s. The case of a generalized switch Chua�s circuit is
analyzed.

0.2 Notations and auxiliary results

Because the classical notion of derivatives at the discontinuity points of f
cannot be used here, a new concept of derivative (which uses the classical
derivative notion at the continuity points) is required.
If f is di¤erentiable at some x0 2 Rn, the derivative f 0 will be given,

as usual, by the Jacobi n� n matrix J .
Let Di be open subsets of Rn, for i = 1; 2; : : : ; p, such that Rn =Sp

i=1Di and let f : Rn ! Rn be a single-valued function.

De�nition 2.1. Let f be di¤erentiable on
Sp
i=1Di . We say that f is

generalized di¤erentiable at x� 2 Rn if the following limit exists and is
�nite

D f (x�) := lim
x!x�

f 0(x); x 2
p[
i=1

Di : (2.1)
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Then, D f (x�) will be called the generalized derivative (generalized Ja-
cobi matrix J (x�)) of f at x�. We say that f is generalized di¤erentiable
on Rn if it is so at every x� 2 Rn.

Notation: The class of functions f having generalized derivative on Rn will
be denoted by C1.

The discontinuity set of f is contained in M = Rnn
Sp
i=1Di.

Example Let consider

f (x) = x+ sgn(x) ;

with M = f0g . D1 = fx 2 R jx < 0g ; and D2 = fx 2 R jx > 0g.
Then, for x� = 0, we have Df (0) = lim

x!0
f 0(x) = 1:

It is easy to check the following proposition.

Proposition 2.1. Let consider the i.v.p. (1.1) with g 2 C1[Rn]. Then
f 2 C 1 and

D f (x) = g 0(x�) ; x� 2 Rn : (2.2)

There are many mathematical de�nitions for d.s. (see [Schuster, 1989;
Stuart & Humphries, 1996] and the references herein). We introduce the
following de�nition, which uses the existence and optionally the uniqueness
of solutions.

De�nition 2.2. The i.v.p. (1.1) is said to de�ne a switch generalized d.s. on
Rn if for every x0 2 Rn there exists a solution of i.v.p. (1.1) de�ned
for almost all t 2 I . If the solution is almost everywhere unique, then
the i.v.p. is said to de�nes a switch d.s.

Remark. Many authors (see e.g. [Schuster, 1989] and the references therein)
consider the concept of continuity of a d.s. as being with respect to
the time variable. Hence, if time is a real variable (t 2 R), the system
is called continuous, while if time is an integer variable (t 2 Z), the
system is called discrete. Other authors consider the continuity (or
Lipschitz continuity) with respect to the initial data (see e.g. [Stuart
& Humphries, 1996]). However in the continuity case with respect to
the state variable, for most of the standard assumptions leading to
existence and uniqueness of the solutions, the continuous dependence
on initial data follows.

3



In this paper we consider the state continuity concept.
If the right-hand side of an i.v.p. is a continuous function with respect

to the time t and state variable x then, the i.v.p. may de�nes a d.s.
Example [Stuart & Humphries, 1996] The following continuous right-hand

side i.v.p.

:
x = �x3; x(t0) = x0; � 2 R;

has the local classical solution x(t) = x0=(1� 2�x20 t)1=2. For � � 0 the
i.v.p. de�nes a continuous d.s. on R. For � > 0 the equation does not
de�nes a d.s. on any open set since the classical solution exists only for
t 2 [ 0; 1=2�x20) and for t = 1=2�x20 it becomes unbounded.
If the right-hand side is discontinuous with respect t or / and x , the

i.v.p. need not have classical solutions. One of the typical cases for discon-
tinuous i.v.p. are modeled using the sign function.
Example [Filippov, 1988] Consider the discontinuous right-hand side equa-

tion

:
x = 1� 2 sgn (x) ;

with the classical solutions (Figure 1)

x(t) =

�
3t+ C1
�t+ C2

; C1; C2 2 R ;

As t increases, the classical solutions tend to the line x = 0, but it
cannot be continued along this line, since the map x(t) = 0 so obtained,
does not satisfy the equation in the usual sense (for it

:
x(t) = 0 and the

right-hand side has the value 1� 2 sgn(0) = 1). Hence there are no classical
solutions of i.v.p. starting with x(0) = 0.
Therefore a generalization of the concept of solution is required.

0.3 Di¤erential inclusions and switch dynamical sys-
tems

Let consider the discontinuous i.v.p.

:
x(t) = f (x(t)); x(0) = x0; t 2 I ; (3.1)

with f a piece wise vector single-valued continuous function f : Rn !
Rn. In order to avoid the possible lack of solutions of i.v.p. (3.1), the
problem may be restarted as a di¤erential inclusion (d.i.) [Filippov, 1988]
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:
x(t) 2 F (x(t)) ;
x(0) = x0; for almost all t 2 I ;

(3.2)

where F : Rn =) Rn is a vector set-valued map into the set of all
subsets of Rn, which can be de�ned in several ways. For the background of
d.i. and set-valued functions we refer to [Aubin & Cellina, 1984; Aubin &
Frankowska, 1990].
The simplest convex de�nition of F for our class of functions (de�ned

by (1.1)) is obtained by the so called Filippov regularization (see [Filippov,
1988])

F (x) = conv (f (x)); x 2 Rn ; (3.3)

where conv is the convex hull of f . The function F , given by (3.3) is a
vector set-valued map into the set of all nonempty closed and convex subsets
of Rn. In the points x where the map f is continuous, F (x) consists of
one point which coincides with the value of f at this point (i.e. we get
back f (x) as right-hand side). In the discontinuity points, the set F (x) is
given by (3.3). Details and other regularization procedures can be found
in [Filippov, 1988]. In (3.2) the key is the fact that we can ignore possible
misbehavior of f on sets of null measure (the discontinuity set M) in the
state space.
As example, the Filippov regularization of the usual sign map is the

signum set-valued map Sgn (see Figure 2)

Sgn (x) =

8<:
f�1g ;
[�1; 1] ;
f+1g ;

x < 0
x = 0
x > 0

:

Now we can give the concept of solution to (3.1) in terms of d.i. (3.2).

De�nition 3.1. A (Filippov) solution of i.v.p. (3.1) is an absolutely con-
tinuous vector-valued map x : I ! Rn satisfying (3.2), almost every-
where on I .

The absolutely continuous functions are the weakest kind of solutions
(see [Filippov, 1988] for properties of Filippov solutions). The background
on existence and uniqueness of solutions to di¤erential inclusions, can be
found in [Filippov, 1988] or [Aubin & Cellina, 1984; Aubin, Frankowska,
1990].

Remark 3.1. Embedding f into a set-valued map F , which has enough
regularity closely related to the trajectories of the original di¤erential
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equation, we can stress the point that whenever f is continuous at
x, then a solution to d.i. (3.2) satis�es the i.v.p. (3.1). Certainly, any
classical solution to the i.v.p. (3.1) is a solution to the i.v.p. (3.2).
Hence we are justi�ed to call a solution of i.v.p. (3.1) as a solution of
the i.v.p. (3.2) (see [Filippov, 1988]).

The so called Péano functions, (functions upper semicontinuous with non-
empty closed and convex values) verify the assumptions in the Péano�s exis-
tence theorem for di¤erential inclusions (see [Aubin, Frankowska, 1990]).

De�nition 3.2. F satis�es a growth condition (g.c.) on Rn if there exist
constants K1; K2 � 0 with

k � k � K1 kx k+K2 ;

for all � 2 F (x); x 2 Rn.
The g.c. implies that all solutions remain in some bounded subset and it

is used instead of global boundedness of the right-hand side (compare [Aubin
& Cellina, 1984; Lempio, 1995; Taubert, 1981]). As example the Sgn set-
valued functions satisfy the g.c.
Using the Filippov regularization, the obtained set-valued map F belongs

to Péano�s class.
Let apply now the Filippov regularization to i.v.p. (1.1). One obtain

:
x(t) 2 F (x(t)) := g(x(t)) +

Pn
i=1 �i Sgn (xi(t)) e

i;
x(0) = x0; for almost all t 2 I :

(3.4)

Remark 3.2. On mild assumptions, a d.i. (as (3.2) or (3.4)) has a Filippov
solution that happens to be even unique, but it could have multiple
solutions too.

There are several su¢ cient conditions to assure the uniqueness e.g. one
sided Lipschitz conditions [Filippov, 1964; Lempio, 1990; Lempio, 1995] (i.e.
we have (y 0� y 00; x 0� x 00) � � kx 0 � x 00 k2, uniformly in t and for all y 0 2
F (x 0); y 00 2 F (x 00), with x 0; x 00 2 Rn). The function �Sgn veri�es one
sided Lipschitz condition. Other uniqueness (and existence too) condition is
the maximal monotonicity (see [Aubin & Cellina, 1984; Aubin & Frankowska,
1990]). A general criterion for nonuniqueness does not exists. However for
the i.v.p. (1.1) the positiveness of some �k in (3.4) seems to be adequate for
nonuniqueness (see [Danca 2001 a]).
Example Let the discontinuous i.v.p.

:
x = sgn (x); x(0) = 0. There is

no classical solution starting from 0. However considering the corresponding
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d.i.
:
x 2 F (x) = Sgn (x), for almost all t 2 I; there are multiple Filippov

solutions: x(t) = 0 for t � t� and x(t) = �(t � t�) for t > t� , where
t� � 0 could be 1:
Example If we consider the i.v.p.

:
x = �sgn (x); x(0) = 0, then there is

a unique Filippov solution for the d.i.
:
x 2 �Sgn (x)

x(t) =

�
t� � t ;
0 ;

t � t�
t > t� ;

and the trajectory can be continuously extended from x = 0 for t > t�.
The following theorem is the main result of this section, and states the

conditions in which the i.v.p. (1.1) de�nes a switch (generalized) d.s. using
the underlying i.v.p. (3.4). The proof can be found in [Danca, 2001 a].

Theorem 3.1. Let the i.v.p. (1.1) with g Lipschitz continuous and satis-
fying a g.c. Then the i.v.p. (1.1) de�nes a generalized switch d.s. If
moreover, �i < 0 for all i, then the i.v.p. (1.1) de�nes a switch d.s.

Sketch of proof. If g verify a g.c. then F veri�es a g.c. too. Then,
it can be proved that the i.v.p. (1.1) has Filippov solutions on some interval
[0; T ] (via. i.v.p. (3.4), see Remark 3.1) and the i.v.p. de�nes a switch
generalized d.s. If moreover �i < 0, g being Lipschitz continuous, it can be
proved that the solution is unique (see Remark 3.2), and using De�nition
2.2, the i.v.p. de�nes a switch d.s. In order to extend the existence interval
to [0; 1), necessary to de�ne a d.s. a compactness condition is needed (see
[Aubin & Cellina, 1990, pp. 101]). In our case, is easy to see that F (x) is a
compact set.
The d.i. (3.4) is used in Theorem 3.1 only as a tool to prove the exis-

tence/uniqueness of the Filippov solutions.

Remark Another way to approach switch d.s. modeled by i.v.p. (1.1) is
the use of the Cellina�s Theorem [Aubin & Cellina, 1990, Theorem 1,
pp. 84 and Aubin & Frankowska, 1990, Theorem 9.2.1, pp. 358] to
approximate the discontinuous i.v.p. with a continuous one (see also
[Danca, 2001 b]).

Test problem. Let consider the following discontinuous problem modeling
a Chua circuit ([Brown, 1993; Chua et al., 1993])

:
x1 = �� (b+ 1) [x1 � k sgn (x1)] + �x2
:
x2 = x1 � x2 + x3
:
x3 = �� x2 ;

(3.5)
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Using the parameters indicated in [Brown, 1993]: ��(b+1) = �2:57; � =
9; � = 15:7 and k = 1:5; we have

f : R3 ! R3; f (x) =

0@ f1(x)
f2(x)
f3(x)

1A
=

0@ �2:57x1 + 9x2 + 3:86 sgn (x1)
x1 � x2 + x3
�15:7x2

1A :

The discontinuity surface S is de�ned by the equation x1 = 0. The open
subsets Di (see De�nition 2.1) are D1 = f(x1; x2; x3) 2 R3 jx1 < 0g, and
D2 = f(x1; x2; x3) 2 R3 jx1 > 0g. The i.v.p. has no global classical solution
on [ 0;1). The Filippov regularization gives us the following d.i.

:
x1 2 �2:57x1 + 9x2 + 3:86Sgn (x1)
:
x2 = x1 � x2 + x3
:
x3 = �15:7x2 :

(3.6)

with

F (x) =

0@ �2:57x1 + 9x2
x1 � x2 + x3
�15:7x2

1A+ 3:86Sgn (x1) e1:
The i.v.p. (3.5) de�nes a generalized switch d.s. because the assumptions

in Theorem 3.1 can be reasonably checked, the map g(x) = (�2:57x1 +
9x2 ; x1� x2+ x3; �15:7x2)T being a linear one. The solution is not unique
due to the presence of +Sgn (x1) (see Remark 3.2). In Figure 3, f1 and F1(x1; x2) =
�2:57x1 + 9x2 + 3:86Sgn (x1) ; are plotted.
The simplest numerical method for d.i. is the explicit Euler method.

It is known that under some assumptions any sequence of piecewise linear
interpolations of some discrete trajectories has a convergent subsequence in
C[0; T ] , to some trajectory of a d.i. [Dontchev & Lempio 1992; Lempio
1990; Lempio 1995]. Let N be a natural number N 2 N0 � N; N0 denoting
a subsequence of N tending to in�nity, h = T=N , and an equidistant grid

t0 < t1 < t2 < : : : < tN = T :

For each h let be a set of linear continuous functions approximating
the whole solution set Xh of (3.2). We associate with (3.2) a sequence of
discrete-time inclusions in the form
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yk+1 2 GNk (h; yk);
k = 0; 1; : : : ; N � 1; y0 = x0;

(3.7)

where GNk : Rn =) Rn is a discrete-time set-valued map. A solution
of (3.7) is any sequence of N + 1 vectors y0; y1; : : : ; yN that satis�es (3.7)
for k = 0; 1; : : : ; N � 1. The main problem is to de�ne a family of mappings
GNk such that the solutions of the problem (3.7) suitable approximate in
some sense the set of solutions Xh. In order to de�ne a link between the
trajectories of the continuous-time i.v.p. (3.2) and discrete-time (3.7), we
associate the state yk of the discrete-time system with the moment tk in the
continuous time-scale, i.e. we compare yk with x(tk).
The explicit (forward) Euler method for solving a d.i. is the set-valued

version of the classical discretization method for di¤erential equation with

GNk (h; yk) = yk + hF (tk; yk) (3.8)

The Euler convergence theorem for d.i. is presented in many works, and
various forms (see e.g. [Filippov, 1988, Theorem 1, pp.77; Aubin & Cellina,
1984, Lemma 1, pp. 99; Aubin & Frankowska, Theorem 10.1.3, pp. 390],
or the papers [Lempio, 1998; Lempio, 1995; Lempio, 1990; Taubert, 1981]).
Its constructive proof (for example Euler broken lines) uses the idea of the
classical Péano theorem to prove existence of solutions to d.i.

Theorem 3.2. (Péano�s Theorem, [Dontchev & Lempio, 1992]). Let the
i.v.p. (3.2) with F a Péano function satisfying a g.c. Then, every se-
quence (yN)N2N0, de�ned by (3.7-3.8), with yN 2 Xh for N 2 N0 ; has
a subsequence which converges as N !1 uniformly in I, to some so-
lution of (3.2).

Because, generally, the solution of the inclusion (3.7) is not unique, the
question is how to reasonably choose yk+1 of GNk (h; yk) at each step of the
discrete system. yk+1 would be selected randomly (as in the present paper) or
by a suitable criterion (see [Dontchev & Lempio, 1992] and [Kastner-Maresch
& Lempio, 1993] for selection strategy).
If the solution is unique the whole sequence of approximations converges

to this solution.
Test problem. Let consider the Chua�s circuit (3.5). For the behavior is

chaotic, this motion being deduced from the bifurcation diagram (Figure 4),
where the maximum values of versus the control parameter � was plotted.
The corresponding trajectory was obtained using the explicit Euler method
(Figure 5).
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In Figure 6 a computer graphic simulation using Matlab was plotted.
The solution is not unique (see Remark 3.2). This could be interpreted

here in the following manner: the value of
:
x1; for x1 = 0 ; is uncertain and

can take any value in the range 9x2 + [�3:86; 3:86]. Hence, any numerical
solution corresponding to

:
x1 in this range, can be considered as a possible

motion of system for a period of time.

Remark 3.3. In the case of the explicit methods (as the forward Euler
method used in this paper), the trajectory could have corners on some
time subintervals (Figure 7), where the exact solution does not exists
in the classical sense but only in the Filippov sense and crosses several
time the discontinuity surface S (see also [Danca, 2001 b]). Exam-
ples can be found in [Wiercigroch & de Kraker, 2000]. To avoid the
nonsmoothness of the solutions of a di¤erential inclusion, highly con-
sistent implicit methods with additional procedures can be used, as the
implicit Runge-Kutta methods (compare [Dontchev & Lempio, 1992]).

0.4 Lyapunov exponents

Lyapunov exponents are a generalization of the eigenvalues at an equilibrium
point. It quanti�es the average growth of in�nitesimally small errors in the
initial point . It is well known that if the largest Lyapunov exponent of a d.s.
is positive, then two trajectories starting close to one another in the phase
space, will move exponentially away from each another for small times on the
average. The existence of at lest one positive Lyapunov exponent is often
used as de�nition of chaos (the Gulik�s de�nition [Gulik, 1992]). However,
one should not rely solely on this technique to certify a motion to be chaotic.
Other tests (spectral analysis, Poincaré functions, bifurcation diagrams or
fractal dimension) should also be used to con�rm the presence of chaos.
The existence of the Lyapunov exponents is assured by the criterion pro-

vided by the famous multiplicative ergodic theorem of Oseledec [Oseledec,
1968] that relies on some ergodic probability measure invariant with respect
to the �ow. The Oseledec�s theorem implies that the Lyapunov exponents
of a function f exist in great generality if f is a C1[Rn] function and the
Jacobi matrix is Hölder continuous for some exponent � (see [Guchenheimer
& Holmes, 1983]).
There are two general methods to calculate the Lyapunov exponents. One

is for data generated by a continuous i.v.p. (see e.g. [Schuster, 1989]), and the
other for experimental time series data (see e.g. [Eckmann & Ruelle, 1985;
Wolf et al., 1985]). The last method does not requires a priori knowledge of
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the system equations. The procedures to compute Lyapunov exponents can
be found also in [Benettin et al.,1976; Benettin et al.1980; Wolf et al., 1985].
Consider the continuous i.v.p.

:
x(t) = f (x(t)); x(0) = x0; t 2 [ 0;1) : (4.1)

with f : Rn ! Rn a continuous vector-valued function. Let a trajectory
in Rn, called ��duciary� [Wolf et al., 1985], starting from x0 and a nearby
trajectory starting from x0+"(0); " being the distance function between the
two trajectories. Then at small later time this distance becomes "(t) (see
Figure 8 (a)).
The time evolution for " is found from the variational equations (see e.g.

[Parker & Chua, 1989])

:
"(t) = J (x(t))"(t) ; (4.2)

where J is the Jacobi matrix evaluated at the initial value x(t), being
in general time-dependent even if the i.v.p. is autonomous. The initial
conditions are taken in general "(t0) = I .
Let the assumptions in Oseledec�s theorem hold. Then the following limit

exists and de�nes the Lyapunov exponents

�i = lim
t!1

�
1

t
log j�i j

�
; i = 1; 2; : : : ; n ; (4.3)

where �i are the eigenvalues of J , for x0 ranging over Rn. lim can be
replaced by lim sup to guarantee the existence of the Lyapunov exponents.

Remark. It is easy to see that if x0 = x�, where x� is an equilibrium
point, then the Lyapunov exponents are equal to the real parts of the
eigenvalues of J (x�) (see e.g. [Parker & Chua, 1989]). If x0 6= x� , the
trajectory starting from x0 tends to x� for t ! 1, i.e. lies in the
basin of attraction of the equilibrium point. Then, since the Lyapunov
exponents are de�ned in the limit as t ! 1, any transient can be
ignored and, the Lyapunov exponents of x� and x0 are the same.

In order to make a numerical estimation of " we need �rst to integrate
(4.1), to �nd x(t). It can be prove (see e.g. [Schuster, 1989]) that at the time
t the largest Lyapunov exponent, �m, is given as follows

k "(t) k t e�mt:
To avoid the possible over�ow in the computer, one calculate the di-

vergence of nearby trajectories for �nite step-size and then one renormal-
ize "(i�) ; i = 1; 2; : : : ; n to unity after each step � and one take the average
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(see [Benettin et al., 1976; Benettin et al., 1980; Eckmann & Ruelle, 1985;
Parker & Chua, 1989]). Here � must be not necessarily equal to the inte-
gration step. Finally we have (see Figure 8 (b))

�m = lim
n!1

1

n �

nX
i=1

ln k "( � i)k ;

where

"(�) = "(0)e�1� ; "(2�) =
"(�)

k "(�) ke
�2� ; : : : ;

Consider now the discontinuous i.v.p. (1.1) with g 2 C1[Rn] . The Jacobi
matrix J is not de�ned at x 2M; but, using De�nition 2.1 and Proposition
2.1, we can use the generalized Jacobi matrix, J (x) = D f (x), given by (2.1)
and de�ned at all the points x 2 Rn.
Hence, the above steps can be used in order to �nd �m.

Remark 4.1. The equation (4.2) will be considered only as an approxi-
mated model for the deviation " in the neighborhood of the disconti-
nuity surface. Suppose that the two analyzed trajectories (Figure 8)
approach the discontinuity surface. Then, " could have di¤erent evo-
lutions before and after crossing (Figure 9). Hence, the behavior could
remains chaotic (Figure 9 (a)) or could becomes regular (Figure 9 (b)).
The problem could be avoid using numerical method with a high con-
sistency order (See Remark 3.3). Our numerical experiments allowed
us to the conclusion that, for our class of switch systems, the chaotic
behavior, existing before the crossing, still persists after the crossing.

In order to �nd the Lyapunov exponents (using the algorithm presented
in Section 3.1), we need to solve numerically the systems (4.1) and (4.2) with
J insteadJ .
Test problem Using the above algorithm we found that for the Chua�s

generalized discontinuous d.s. (3.5) the largest Lyapunov exponent for � =
15:7 is �m t 0:39. It is interesting to see that the largest Lyapunov exponent
for the underlying continuous Chua�s circuit is �m t 0:48.

0.5 Synchronizing dynamical systems

Consider �rst, a chaotic continuous d.s.
:
x(t) = f (x(t)) with n � 3. Let

� be a p - dimensional chaotic attractor in a m - dimensional phase space
(m > p).
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De�nition 5.1. The set � is a Milnor attractor [Milnor, 1985], if it is Lya-
punov stable (i.e. the basin of attraction, �(�), has a positive Lebesgue
measure);

� is an asymptotically stable attractor if it is a Milnor attractor, and
�(�) is a neighborhood of �.
However, because it can happen, that �(�) do not include the neighbor-

hood of the attractor, the weaker Milnor attractor notion is usually used (see
[Milnor, 1985] for the background of related notions).
If two d.s. evolve on an asymptotically stable n-dimensional attractor �

in 2n- dimensional phase space R2n, given by the relation x = y, we can
locally synchronize them using the one-to-one coupling

:
x(t) = f (x(t)) + c(y(t)� x(t));
:
y(t) = f (y(t)) + c(x(t)� y(t));
x(0) = x0; y(0) = y0; x0 6= y0;

(5.1)

for some positive range of the coupling coe¢ cient c, i.e. the synchronized
(or synchronous) state z(t) = x(t) � y(t) becomes stable. Synchronization
can be global, when the equilibrium z = 0 is asymptotically stable, meaning
that no matter what initial conditions x0; y0 are taken, the systems will syn-
chronize, or local when the equilibrium is only stable. If c = 0 then there is
no synchronization. The synchronization state becomes stable equilibrium if
the following well known theorem of Fujisaka and Yamada holds [Fujisaka &
Yamada, 1983].

Theorem 5.1. Let �m be the largest Lyapunov exponent of the continuous
dynamical system

:
x(t) = f (x(t)). Assume one-to-one coupling (5.1).

If c > �m=2 then the coupled systems satis�es local synchronization.
That is the synchronization state z(t) = x(t) � y(t) = 0 is a stable
equilibrium.

P r o o f : The variational equations for the synchronized trajectory of
(5.1) are, for x; y 2 �� :

x(t)
:
y(t)

�
=

�
A(t)� cI cI
cI A(t)� cI

��
x(t)
y(t)

�
; (5.2)

where A is the Jacobi matrix of f evaluated along the synchronized
trajectory x(t) = y(t). Subtracting in (5.1) one obtain

:

B(t) = (A(t)� 2cI)B(t); (5.3)

where B is the Jacobi matrix of the �ow z.
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Now, the linearization in the neighborhood of the attractor � allows us
to reduce the problem of stability of the attractor to the problem of stability
of the �xed point z(t) = 0 of the equation (5.3), based on the fundamen-
tal results of the linear stability. The spectrum of Lyapunov exponents of
equation (5.3), given by the characteristic equation, can be divided into two
subsets: �1 = f�1; �2; : : : ; �ng associated with the evolution on the invariant
manifold x = y, with at least one of Lyapunov exponents always positive,
and �2 = f�1 � 2c; �2 � 2c; : : : ; �n � 2cg describing the evolution trans-
verse to above manifold. Next, if the largest Lyapunov exponent �m veri�es
c > �m=2 , then obviously the chaotic attractor � is stable in R2n. If
c < �m=2 the manifold x = y is a repeller, the synchronization being not
possible .
A rigorous theory of the transverse dynamics near an invariant submani-

fold, as �, can be found in [Ashwin et al., 1994; Ashwin et al., 1996].
Consider now the one-to-one coupling of two identical chaotic switch d.s.

(1.1) with g 2 C1[Rn] Then, using the generalized Jacobi matrix, the Syn-
chronization Theorem 5.1 can be applied (see Proposition 2.1).
Remark. The assumption g 2 C1[Rn] assures, besides the possibility to

�nd the Lyapunov exponents and synchronization, the su¢ cient conditions
for i.v.p. (1.1) to de�ne a switch d.s.
Application. Let us consider again the Chua generalized switch d.s. (3.5).

Using the one-to-one synchronization algorithm, we obtained the result illus-
trated in Figure 10. The synchronization algorithm was applied beginning
from t = t0. Before this value, c is taken 0, and the two trajectories are
separated. After t = t0 if we chose c > �m=2 t 0:19 ; after small time, the
systems becomes synchronized.
Remark.
i) In [Stefanski & Kapitaniak, 2000] the chaos synchronization is used to

estimate the largest Lyapunov exponent for continuous d.s. Hence, making a
bifurcation diagram of the state z versus c, the searched value �m is twice
the smallest value of the coupling coe¢ cient c for which the synchronization
takes place (i.e. z vanishes). Obviously, this method can be used to �nd
�m for switch d.s. too.
ii) The value choose for c, c = 0:30, is sensible larger than �m =2 t 0:19,

(probably) due to the in�uence of the discontinuity (see Remark 4.1).

Conclusions Although the class of i.v.p. (1.1), has a particular form, it can
be founded in many practical problems.

We introduced De�nition 2.2 because not all discontinuous i.v.p. de�nes
a d.s. Hence, in order to �nd the assumptions in which the i.v.p. (1.1) de�nes
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a d.s., the function g must be of C1[Rn] class. Introducing the concept of
generalized derivative, it seems that is possible to �nd the Lyapunov expo-
nents and synchronize two such identical d.s. having chaotic motion. We
realized the synchronization of two generalized Chua circuits modeled by a
discontinuous i.v.p.
The synchronization proposed in this paper can be applied to nonau-

tonomous switch d.s. too.
In [Filippov, 1988] several aspects of the general class of problems (3.1)

are treated.
Some problems which deserve future investigations are a qualitative (or

quantitative) study of the system behavior in the discontinuity points and a
generalization of our derivative concept to a larger class of i.v.p. (1.1).
Acknowledgment. The author thanks to Professors J. Kolumban and

D. Trif for some very interesting discussions and suggestions.
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Fig. 1. Solutions of the equation
:
x=1� 2sgn(x), for x 6= 0:

Fig. 2. The graph of the set-valued
function Sgn(x).
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Fig. 3. (a) The graph of the �rst component,
f1, of the right-hand side of (8); (b) The
graph of the corresponding set-valued
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Fig. 4. Bifurcation diagram of the component
x3 max of the dynamical system (8) versus the

control parameter �.
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Fig. 5. A chaotic trajectory of the switch Chua
circuit (8) obtained with the explicit Euler

method. (a) Phase portraits and

Fig. 6. Three-dimensional view of a chaotic
trajectory and
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Fig. 7. Detail of a chaotic trajectory. Due to x1
discontinuity, only this component presents corners

near the discontinuity surface x1 = 0.

Fig. 8. (a) Exponential separation of two closed
trajectories (schematically); (b) Renormalization of

errors along a trajectory
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Fig. 9. The divergence of two closed trajectories in
the phase space [0;1)�R near the discontinuity
surface S; x = 0. (a) The distance between the
trajectories still increases after the surface crossing:
the system behavior could remain chaotic; (b) The
distance decreases, and the motion could be not
chaotic after the crossing (schematically).
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Fig. 10. Synchronization of two identical switch Chua
circuits modeled by (8).
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