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Abstract The aim of this study is to prove analyt-
ically that synchronization of a piece-wise continuous

class of systems of fractional order can be achieved.

Based on our knowledge, there are no numerical meth-

ods to integrate differential equations with discontin-
uous right hand side of fractional order which model

these systems. Therefore, via Filippov’s regularization

[1] and Cellina’s Theorem [2,3], we prove that the initial

value problem can be converted into a continuous prob-

lem of fractional-order, to which numerical methods for
fractional orders apply. In this way, the synchroniza-

tion problem transforms into a standard problem for

continuous systems of fractional order. Three examples

of fractional-order piece-wise systems are considered:
Sprott system, Chen and Shimizu-Morioka system.

Keywords piece-wise continuous function · fractional
order system · synchronization · approximate selection ·
sigmoid function

1 Introduction

Discontinuous fractional-order systems provide a logi-

cal link between the fractional derivative approach to

descriptive system properties, such as ”memory” and

”heredity”, and the physical system properties, such as
dry friction, forced vibration brake processes with lock-

ing phase, stick, and slip phenomena.
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However, on our knowledge, there are very few works

(if any), on discontinuous systems of fractional-order

and the known synchronization algorithms apply to con-

tinuous systems of integer or fractional-order and rarely

to discontinuous systems of integer order.

Also, even most of dedicated numerical methods
for DE of fractional-order can be used to “integrate”

abrupto discontinuous equations of fractional-order, this

approach has not any mathematically justification (it is

known that discontinuous equations may have not any

solutions). Therefore, special numerical methods and
approach are necessary in this case.

Nowadays, there are numerical methods for contin-

uous DE of fractional-order (see e.g. [4,5]) and also for

DE of integer order with discontinuous right hand side

(see e.g. [6,7]).

Therefore, modeling continuously discontinuous sys-

tems of fractional-order, could be of a real interest in
synchronization, chaos control, anticontrol but also for

quantitative analysis.

The fractional-order systems considered in this pa-

per are modeled with piece-wise continuous functions

f : Rn → Rn, of the following form

f(x(t)) = g(x(t)) +Kx(t) +A(x(t))s(x(t)), (1)

where g : Rn → Rn is a vector single-valued, nonlinear

and at least continuous function, s : Rn → Rn, s(x) =

(s1(x1), s2(x2), ..., sn(xn))
T a vector valued piece-wise

function, with si : R → R, i = 1, 2, ..., n real piece-wise

constant functions, A ∈ Rn×n a square matrix of real

functions and K ∈ Rn×n a square constant real matrix,

Kx representing the linear part of f .

Notation 1 Let denote by M the discontinuity set of

f (of zero Lebesgue measure: µ(M) = 01), generated by

the discontinuity points of the components si.

M separates Rn in several sub-domains Di, where f is

continuous, and possible differentiable in their interior.

The following assumption will be considered

(H1) As is discontinuous in at least one of his compo-

nents.

For example, the following piece-wise continuous (lin-

ear) function f : R → R

f(x) = 2− 3sgn(x), (2)

has M = {0} which determines on R the continuity

sub-domains D1 = (−∞, 0] and D2 = [0,∞). The graph
is plotted in Fig. 1a.

1 As known, the Legesgue measure of a point on the real
line, as well the Lebesgue measure of a line in R2, or Lebesgue
measure of a plane in R3, is zero.
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The form of f , given by (1), appears in the great

majority of nonlinear piece-wise continuous systems of

fractional or integer order, which are modeled by the

following Initial Value Problem (IVP)

Dq
∗x(t) = f(x(t)) :=

g(x(t)) +Kx(t) +A(x(t))s(x(t)),
x(0) = x0, t ∈ I = [0,∞).

(3)

In this paper, Dq
∗, with q = (q1, q2, ..., qn), 0 < qi ≤

1, i = 1, 2, ..., n (q = 1 for the integer order), de-

notes the commonly used operator in fractional calcu-
lus: Caputo’s differential operator of order q (called also

smooth fractional derivative with starting point 0)[8–

10]

Dq
∗x(t) =

1

Γ (1− q)

∫ t

0

(t− τ)−q d

dt
x(τ)dτ,

where Γ is the Euler’s Gamma function

Γ (z) =

∫ t

0

tz−1e−tdt, z ∈ C, Re(z) > 0.

We consider in this paper R3 examples. For exam-

ple, the fractional variant of the piece-wise Chen system
[11]

Dq1
∗ x1 = a (x2 − x1) ,

Dq2
∗ x2 = (c− a− x3) sgn(x1) + cdx2,

Dq3
∗ x3 = x1sgn(x2)− bx3.

(4)

with a = 1.18, b = 0.16, c = 1.2, d = 0.1 and the

fractional-order (q1, q2, q3), has g(x) = (0, 0, 0)
T
(i.e. f

in this case is piece-wise linear), s(x) = (sgn(x1), sgn(x2),

sgn(x3))
T and

K =




−a a 0

0 cd 0

0 0 −b


 ,

and

A(x) =




0 0 0

c− a− x3 0 0

0 x1 0


 .

Remark 1 The discontinuity in this case is due only to
the component (c− a)sgn(x1).

As in most practical examples, the use of Caputo
derivative in the IVP (3) is fully justified since in these

problems we need physically interpretable initial con-

ditions, or Caputo derivative satisfies these demands,

by avoiding the expression of initial conditions with
fractional derivatives [4]. Accordingly, the initial con-

dition in (3), can be considered in the standard form

x(0) = x0.

To overcome the discontinuity impediment, we shall

use Filippov’s approach [1]. This technique targets the

piece-wise constant functions s, and converts them in

set-valued functions. Next, via Cellina’s Theorem [2,3],

the set-valued functions are continuously approximated
in small neighborhoods of underlying set-valued func-

tions.

The results are valid for a large class such as Heav-

iside function H , rectangular function (as difference of
two Heaviside functions), or signum, one of the most

encountered functions in practical applications.

The paper is organize as follows: Section 2 deals

with the approximation of f defined by (1) and shows

how the IVP (3) can be transformed into a contin-
uous single valued problem. In Section 3 the asymp-

totically synchronization of piece-wise continuous sys-

tems of fractional-order is investigated and the neces-

sary condition for chaotic behavior of these system is
presented. In Section 4 the asymptotically synchroniza-

tion is applied to three piece-wise continuous systems

of fractional-order: Chen’s system, Sprott’s system and

Shimizu-Morioka’s system. Appendix includes proofs

and results utilized in the paper.

2 Continuous approximation of f

In this section we prove that the considered class of

piece-wise continuous functions defined in (1), can be
approximated as closely as desired with continuous func-

tions. First, the piece-wise continuous function f will

be transformed into a set-valued function, which will

be approximated with continuous functions. For this
purpose, we will choose the way proposed by Fillipov

in [1], namely the Filippov regularization. Thus, the

discontinuous function f is transformed into a convex

set-valued function F into the set of all subsets of Rn,

F : Rn
⇒ R

n. One of the simplest expressions for F , is
[1–3]

F (x) =
⋂

ε>0

⋂

µ(M)=0

conv(f(z ∈ R
n : |z − x| ≤ ε\M)).

(5)

F (x) is the convex hull of f(x), µ being the Lebesgue

measure and ε the radius of the ball centered in x. At

the points where f is continuous, F (x) consists of one
single point, which coincides with the value of f at this

point (i.e. we get back f(x) as the right hand side:

F (x) = {f(x)}). In the points belonging to M, F (x) is

given by (5).
If the piece-wise-constant functions si are sgn func-

tions, their set-valued form, obtained with Filippov reg-

ularization, denoted by Sgn : R ⇒ R, is defined as
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follows (see Fig. 2a) before regularization and Fig. 2b)

after regularization)

Sgn(x) =





{−1}, x < 0,

[−1, 1], x = 0,

{+1}, x > 0.

(6)

By applying the Filippov regularization to f , one ob-

tains the following set-valued function

F (x) = g(x) +Kx+A(x)S(x), (7)

with

S(x) = (S1(x1), S2(x2), ..., Sn(xn))
T , (8)

Si : R → R being the set-valued variants of si, i =

1, 2, ..., n (Sgn(xi) in the usual case of sgn(xi)).

For example, the graph of the set-valued variant of f
defined in (2) is plotted in Fig. 1b.

The notions and results presented next are consid-

ered in R, but they are also valid in the general case

Rn, n > 1. Let a set-valued function F : R ⇒ R.

A set-valued function F can be characterized by its
graph

Graph(F ) := {(x, y) ∈ R× R, y ∈ F (x)}.

Remark 2 Due to the symmetric interpretation of a set-

valued function as a graph (see e.g. [2]) we shall say that

a set-valued function satisfies a property if and only if
its graph satisfies it. For instance, a set-valued function

is said to be closed if and only if its graph is closed.

Definition 2 A set-valued function F is upper semi-

continous (u.s.c.) at x0 ∈ R, if for any open set E con-

taining F (x0), there exists a neighborhood A of x0 such
that F (A) ∈ B.

We say that F is u.s.c. if it is so at every x0 ∈ R.

U.s.c., which is a basic property, practically means that

the graph of F is closed.

Definition 3 A single-valued function h : R → R is

called an approximation (selection) of the set-valued

function F if

∀x ∈ R, h(x) ∈ F (x).

Generally, a set-valued function admits (infinitely) many

approximations (see Fig. 1b for the case of function de-
fined in (2)).

As proved in [12], the set-valued functions Si, i =

1, 2, ..., n, can be approximated due to the Approximate

Theorem, called also Cellina’s Theorem (Appendix) which
states that a set-valued function F , with closed graph

and convex values, admits continuous approximations.

This result is assured by the following lemma

Lemma 1 For every ε > 0, the set-valued functions

Si, i = 1, 2, ..., n admit continuous approximations in

the ε-neighborhood of Si.

Proof Si, for i = 1, 2, ..., n, are convex u.s.c. (see e.g. the
Remark in [1] p. 43 or the Example in [3] p. 39 for u.s.c.)

and, via Remark 2, are non-empty closed valued func-

tions. Therefore, they verifies Cellina’s Theorem which

guaranties the existence of continuous approximations

on R. ⊓⊔

Notation 4 Let denote by s̃i : R → R the approxima-

tions of Si.

For the sake of simplicity, for each component s̃i(xi),

i = 1, 2, ..., n, εi will be considered as having the same

value.

Some of the best candidates for s̃ are the sigmoid func-

tions, since they provide the required flexibility and to
which the abruptness of the discontinuity can be easily

modified. For S(x) = Sgn(x), one of the most utilized

sigmoid approximations is the following function s̃gn2

s̃gn(x) =
2

1 + e−
x
δ
− 1 ≈ Sgn(x), (9)

where δ is a positive parameter which controls the slope

in the neighborhood of the discontinuity x = 0 (Fig. 3a
and Fig. 3b).

Summarizing, we can enounce the following result,

which assures the possibility to approximate continu-

ously f

Theorem 1 Let f defined by (1). If g is continuous,

then there exist continuous approximations of f , f̃ :
Rn → Rn

f̃(x) = g(x) +Kx+A(x)s̃(x) ≈ f(x). (10)

Specifically, Theorem 1 actually means that the con-

sidered function f can be approximated simply by re-
placing s with s̃ (dotted line in sketch in Fig. 4). For

example, f defined by (2), can be approximated as fol-

lows

f̃(x) = 2− 3s̃gn(x) = 2− 3

(
2

1 + e−
x−0.5

δ

− 1

)
. (11)

Theorem 1 states that systems modeled by the IVP

(3), can be continuously approximated by the following
continuous IVP

Dq
∗(x) = f̃(x), x(0) = x0,

with f̃ defined by (10).

2 The class of sigmoid functions includes for example the or-
dinary arctangent such as 2

π
arctanx

ε
, the hyperbolic tangent,

the error function, the logistic function, algebraic functions
like x√

ǫ+x2
, and so on.
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3 Synchronization

Once we proved that systems modeled by (3) can be

continuously approximated, they can be synchronized

via any kind of synchronization schemes for continuous
systems. In this paper we consider the synchronization

in coupled chaotic system via master-slave configura-

tion.

As known, a linear autonomous system of fractional-

order is asymptotically stable if his zero (equilibrium)

point is asymptotically stable.

The computation of the Jacobian requires the fol-

lowing assumption

(H2) Function g in (1) is suppose to be differentiable

on Rn.

Since the discontinuous functions appearing in the

considered examples are sgn, next we study some prop-
erties of this function and its approximations.

Let X∗ and X̃∗ the equilibrium points of f and f̃

respectively, and J and J̃ the related Jacobians.

Property 1 For every δ > 0, there exists a small neigh-
borhood of M, V, depending on δ, such that X̃∗ ≈ X∗

for x 6∈ V.

See the proof in Appendix.

Remark 3 As known, the error of ABM method utilized
in this paper to integrate the fractional DE, is of order

O(hp) [4] with p = min(2, 1 + qmin). For our step size

h = 0.005, this error is of order of 1e− 5. On the other

side, in order to ensure the validity of Property 1 for a
large class of systems (3), the size of V must be smaller

than hp. δ = 1/100000, proves to be an acceptable com-

promise between the numerical accuracy and computer

precision and also assures the requirements for Property

1. For this choice, V = (−1.589e−4, 1.589e−4) and for
x 6∈ V , the difference between s̃gn and the branch ±1

of the function sgn is of order of 1e− 7. In all studied

examples, X∗(X̃∗) are situated outside of these neigh-

borhoods.

Regarding the size of δ the following hypothesis is con-

sidered

(H3) In this paper we chosen δ = 1/100000.

For the derivative d
dx
s̃gn (plotted as function on δ in

Fig. 5a), the following property holds

Property 2 Assume (H2). For every δ > 0, there ex-

ists a neighborhood of x = 0, V, depending on δ such

that J̃ |
X̃∗ ≈ J |X∗ , for x 6∈ V.

See the proof in Appendix.

Let consider the following piece-wise continuous mas-

ter system of fractional-order

Dq
∗x = f(x) := g(x) +Kx+A(x)s(x),

x(0) = x0,
(12)

and the slave system

Dq
∗y = f(y) + u := g(y) +Ky +A(y)s(y) + u,

y(0) = y0,
(13)

where u ∈ Rn is the control designed such as the state

of the slave system (13) evolves as the states of the
master system (12).

After continuous approximation, the master system be-

comes

Dq
∗x = f̃(x) := g(x) +Kx+A(x)s̃(x),

x0 = x(0),
(14)

and the slave system

Dq
∗y = f̃(y) + u := g(y) +Ky +A(y)s̃(y) + u,

y0 = y(0).
(15)

The utilized active control method requires to design

u ∈ R
n such as the error, defined as e = y − x, tends

asymptotically to zero: lim
t→∞

||e(t)|| = 0 (|| · || being the

Euclidean norm). Thus, the error dynamical system is

obtained by subtracting (14) from (15)

Dq
∗e = g(y)− g(x) +Ke+A(y)s̃(y)−A(x)s̃(x) + u,

e(0) = y(0)− x(0).

(16)

and the asymptotically synchronization transforms into

asymptotically stability of the zero equilibrium point of
(16). For this purpose, u has to be defined such as the

error system becomes an asymptotically stable linear

system. The usual choice for the active control is

u = −g(y) + g(x)−A(y)s̃(y) +A(x)s̃(x) + v,

with v ∈ Rn, v = Me, where M is some real square

matrix M ∈ Rn×n, which can be chosen in many possi-
ble ways. Thus, by replacing u in (16), the error system

becomes a linear system

Dq
∗e = Ee, e(0) = y(0)− x(0), (17)

with E = M +K.

Theorem 2 The piece-wise continuous master-slave sys-

tem (12)-(13) asymptotically synchronizes if and only

if:

a. for the commensurate case, all eigenvalues λ of E,

verify the condition

|arg(λ)| > qπ/2; (18)
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b. for the incommensurate case qi = ki/mi < 1, ki,

mi ∈ N, mi 6= 0, for i = 1, 2, ..., n, ki, mi being

coprime positive integers, (ki,mi) = 1, all the roots

of the characteristic equation

P (λ) := det(diag[λmq1 , λmq2 , ..., λmqn ]− E) = 0,

(19)

with m the least common multiple of the denomina-

tors mi verify the condition

|arg(λ)| > π/2m. (20)

Proof Under the assumptions given by Properties 1 and

Property 2, the master and the slave systems trans-

form into continuous systems of fractional-order and
the proof follows the same steps such as the proof for

original theorems for continuous systems (see [13,14]

for commensurate and incommensurate cases respec-

tively). ⊓⊔

Summarizing, if we denote with Λ the spectrum

of the eigenvalues of E or of the roots of (19), and

with αmin = min{|arg(Λ)}, the sufficient and neces-
sary asymptotically synchronization conditions (18) and

(20) can be written as follows

αmin > γπ/2, (21)

where γ = q for the commensurate case, and γ = 1/m

in the case of incommensurate case, or Λ is included in

the domain Ω defined as follows (Fig. 6a)

Λ ⊂ Ω = {λ ∈ C, | arg{λ}| > γπ/2}.

Remark 4 i) Relations (18), (20) or (21) with ” ≥ ” in-

stead ” < ”, mean that there are λi situated on the

separatrices d1,2 having the equations ±tan(γπ/2)

(Fig. 6). If those eigenvalues (or roots) situated on

d1,2 (for example the points λ∗ and λ̄∗ in Fig. 6b
which satisfy the equality), have geometric multi-

plicity of one, then the synchronization is only sta-

ble and not asymptotical stable.3

ii) It is to note that arg should be not considered arctan
function, since arctan ∈ (−π/2, π/2), while arg ∈
[−π, π]. A possible choice is the function atan2 im-

plemented in some software packages or, for exam-

ple, the formulae arg(z) = arctan(y/x) + pi/2sign

(y)(1− sign(x)), or 2arctan(

√
x2+y2−x

y
), where z =

x+ iy.

3 The geometric multiplicity represents the dimension of
the eigenspace of eigenvalues.

Chaotic piece-wise continuous systems of fractional-order

Since in this paper the synchronization deals with chaotic

motions, we shall study computationally the existence

of chaotic behaviors for the considered examples, beside

a necessary criterion for chaos existence in fractional-
order nonlinear systems, derived from the Stability The-

orem 2.

We do not consider here the qualitative aspects of the

equilibrium points but only the necessary condition for

chaos and numerical evidences of chaotic motions (see
e.g. [15] for a study on the number of saddle points,

underlying eigenvalues, one-scroll, double-scroll).

Hereafter, it is supposed that the determination of X̃∗

and J̃ , are assured by Properties 1 and 2.

The utilized numerical method is the Adamas-Bashforth-
Moulton variant, proposed by Kai et al in [4], and the

utilized step size h = 0.005.

The trajectories corners which can be seen in phase

plots and time series, are typical to discontinuous sys-

tems [6,7].

Let consider an approximated system of fractional-
order (14), with X̃∗ the equilibrium points and J̃ the

Jacobian matrix.

The condition necessary for chaotic motion related to

one of the equilibria X∗, is [16]

αmin ≤ γπ/2, (22)

or Λ ⊂ Φ = {λ ∈ C, |arg(λ)| ≥ αmin, αmin ≤ γπ/2}
(Fig. 6b).

In this case, αmin is determined for the Jacobian

J̃X∗ , or for the roots of the characteristic equation

P (λ) := det(diag[λmq1 , λmq2 , ..., λmqn ]− J̃X∗) = 0 (23)

Even (22) is only a necessary condition for chaos, it is

useful to find the minimum commensurate order q for

system (3) to remain chaotic. Thus, once we find Λ and
αmin, by setting in (22) γ = q, the values of q from

which chaos might appear are

q > qmin =
2

π
αmin. (24)

For example let us consider the Chen’s system (4)

Dq1
∗ x1 = a (x2 − x1) ,

Dq2
∗ x2 = (c− a− x3) sgn(x1) + cdx2,

Dq3
∗ x3 = x1sgn(x2)− bx3.

(25)

and his the continuous approximation (see Remark 1).

Dq1
∗ x1 = a (x2 − x1) ,

Dq2
∗ x2 = (c− a) s̃gn(x1)− x3sgn(x1) + cdx2,

Dq3
∗ x3 = x1sgn(x2)− bx3.

(26)
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Beside the origin, the system has two other equilibria

X̃∗
1,2 = (±0.003,±0.003, 0.020) and the Jacobian

J̃ =




−a a 0
0 cd −sgn(x1)

sgn(x2) 0 −b




X̃∗
1,2

.

The eigenvalues at X̃∗
1,2 are Λ = (−1.636, 0.208+0.815i,

0.208− 0.815i), arg{Λ} = {3.141, 1.321,−1.321}.
Let consider the case of X̃∗

1 = (0.003, 0.003, 0.020), sim-
ilar results being obtained for X̃∗

2 .

Commensurate case : q = 0.99. Condition (22) is veri-

fied: αmin = 1.321 < 1.555 = 0.99π/2, Λ ⊂ Φ (Fig. 7a),
and for this value of q, the system is chaotic (Fig. 7b).

The minim commensurate value of q to have chaotic

behavior is, via (24), q > qmin = 2αmin/π = 0.841.

Incommensurate case : q = (1, 0.9, 1). The characteris-

tic polynomial (23) is

λ29 − 3/25λ20 + 67/50λ19 − 201/1250λ10 + 118/625λ9

+36167/31250.

Here, m = 10, γ = 1/10 and αmin = 0.138 < 0.157 =
π/20. Therefore condition (22) is verified and Λ ⊂ Φ

(Fig. 7c). The system behaves chaotic (Fig. 7d).

4 Applications

In this section we synchronize three-dimensional sys-

tems: Sprott’s systems, Chen’s systems and Shimizu-

Morioka’s systems, after which, we synchronize two dif-

ferent systems: Sprott’s and Chen’s systems.
For all numerical experiments, beside phase plots

(where the trajectories of the master and slave sys-

tems are overplotted) and time series, we calculated

the Hausdorff distance dH (Appendix). After few hun-
dreds steps have been neglected, dH is of order of 1e−5.

Time series details (for t ∈ [0, 20]) are also plotted to re-

veal the synchronization process. The roots of the char-

acteristic equations have been calculated with Matlab

function solve.
The integration is made via ABM algorithm with

the time step size h = 0.005.

4.1 Sprott system

The Sprott’s system [17,18], considered bellow as mas-

ter system, has the following approximated form

Dq1
∗ x1 = x2,

Dq2
∗ x2 = x3,

Dq3
∗ x3 = −x1 − x2 − 0.5x3 + s̃gn(x1),

(27)

with the initial condition x(0) = (0.29, 0.12, 0.22)T , and

the slave system is

Dq1
∗ y1 = y2 + u1,

Dq2
∗ y2 = y3 + u2,

Dq3
∗ y3 = −y1 − y2 − 0.5y3 + s̃gn(y1) + u3,

(28)

with the initial condition y(0) = x(0) + (0.1, 0.1, 0.1)T ,

where the controller u(t) = (u1(t), u2(t), u3(t))
T ∈ R3

has to be defined next. Subtracting (27) from (28), one

obtains the error system

Dq1
∗ e1 = e2 + u1,

Dq2
∗ e2 = e3 + u2,

Dq3
∗ e3 = −e1 − e2 − 0.5e3 + s̃gn(y1)− s̃gn(x1) + u3,

(29)

where ei = yi − xi, i = 1, 2, 3, are the synchronization

errors with e(0) = y(0)− x(0).

Here

K =




0 1 0

0 0 1
−1 −1 −0.5


 ,

and by choosing the controller

u =




0

0

s̃gn(x1)− s̃gn(y1)


 +M




e1
e2
e3


 ,

with

M =




0 0 0

0 0 0
0 0 −1.5


 ,

the error system receives the linear form

Dq1
∗ e1 = e2,

Dq2
∗ e2 = e3,

Dq3
∗ e3 = −e1 − e2 − 2e3,

(30)

with

E = M +K =




0 1 0
0 0 1

−1 −1 −2


 .

Commensurate case : q1 = q2 = q3 = 0.92. The eigen-

values of E are λ1 = −1.755 and λ2,3 = −0.123±0.745i
with arguments arg(λ1) = π (λ1 is located on the neg-

ative real axis where a complex number has arg = π),

and arg(λ2,3) = ±1.734. Therefore αmin = 1.734 >

1.445 = 0.92π/2 and all eigenvalues are located inside
the asymptotically stability region Ω (Fig. 8a) and the

systems synchronize (see Fig. 8b and Fig. 8c).

Remark 5 Generally, the controller u for systems de-

fined as Dq
∗xi = xi+1, i = 1, 2, ..., n − 1, and Dq

∗xn =
f(x), can be defined for only the nth equation.
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Incommensurate case : q = (0.9, 1, 0.9). Let us con-

sider the master-slave system (27)-(28) with the same

controller. m = 10, and the characteristic polynomial

(19) is

P (λ) := λ28 + 2λ19 + λ9 + 1. (31)

The images of the 28 complex roots are situated inside

the stability region Ω and αmin = 0.1814 > 0.1571 =

π/20 (Fig. 9a) and the two systems synchronize (Fig.

9b and Fig. 9c).

4.2 Chen system

Let the master system

Dq1
∗ x1 = a (x2 − x1) ,

Dq2
∗ x2 = (c− a) s̃gn(x1)− x3sgn(x1) + cdx2,

Dq3
∗ x3 = x1sgn(x2)− bx3,

(32)

and the slave system

Dq1
∗ y1 = a (y2 − y1) + u1,

Dq2
∗ y2 = (c− a) s̃gn(y1)− y3sgn(y1) + cdy2 + u2,

Dq3
∗ y3 = y1sgn(y2)− by3 + u3.

(33)

With the initial conditions x(0) = [−0.009,−0.012, 0.020]T

and y(0) = x(0)+[0.005, 0.005, 0.005]T4, if we chose the

controller u = (u1, u2, u3)
T

u1 = −ae2 + (a− 2)e1,

u2 = (c− a)s̃gn(x1)− (c− a)s̃gn(y1)− x3sgn(x1)

+y3sgn(y1)− (cd+ 1)e2,
u3 = x1sgn(x2)− y1sgn(y2) + (b− 3)e3,

where ei = yi−xi, i = 1, 2, 3, the following error system

is obtained

Dq1
∗ e1 = −2e1,

Dq2
∗ e2 = −e2,

Dq3
∗ e3 = −3e3.

(34)

Here E

E =




−2 0 0

0 −1 0
0 0 −3


 .

Commensurate case : q1 = q2 = q3 = 0.998. The eigen-

values of the Jacobian matrix are Λ = (−3,−2,−1)

with αmin = π > 1.568 = 0.998π/2 (Fig. 10a) and
the synchronization can be made since the eigenvalues

belong to Ω (Fig. 10b and Fig. 10c).

4 The relatively small difference between x(0) and y(0) is
in agreement with the small size of attractor, which as can be
see in, e.g., Fig. 11, is of order of 10−2, and also avoid long
transients before the trajectories reach the attractors.

Incommensurate case : q = (0.99, 0.98, 0.97). The frac-

tional error system is asymptotically stable because, the

roots of the underlying characteristic equation (19)

(λ99 + 2)(λ98 + 1)(λ97 + 3) = 0,

are placed in Ω (Fig. 11a) and αmin = 0.032 > 0.016 =

π/200. The two systems synchronize (Fig. 11b and 11c).

4.3 Shimizu–Morioka system

The fractional variant of the piece-wise continuous Shimizu-

Morioka’s system has the following mathematical model

[19,20]

Dq1
∗ x1 = x2,

Dq2
∗ x2 = s̃gn(x1)− x3sgn(x1)− αx2,

Dq3
∗ x3 = x2

1 − βx3,

(35)

where α = 0.75 and β = 0.45. Such as for Chen’s sys-

tem, x3sgn(x1) should not be approximated (Remark

1). Beside the origin, the other two equilibrium points

are X̃∗
1,2 = (±

√
β, 0, 1) and the Jacobian is

J̃ =




0 1 0

0 −α −sgn(x1)
2x1 0 −β




X̃∗
1,2

.

Again Properties 1 and 2 have been used.

Let (35) be the master system and

Dq1
∗ y1 = y2 + u1,

Dq2
∗ y2 = s̃gn(y1)− y3sgn(y1)− αy2 + u2,

Dq3
∗ y3 = y21 − βy3 + u3.

(36)

the slave system.

If we chosen u1 = −e1−e2, u2 = −s̃gn(y1)+y3sgn(y1)+

s̃gn(x1)− x3sgn(x1) and u3 = −y21 + x2
1, the error sys-

tem is

Dq1
∗ e1 = −e1,

Dq2
∗ e2 = −αe2,

Dq3
∗ e3 = −βe3.

(37)

Let next consider X̃∗
1 .

Commensurate case : q1 = q2 = q3 = 0.9. Then Λ =
(−1.000,−0.750,−0.450) and αmin = π > 1.445 =

0.9π/2 (Fig. 12a). Therefore the systems synchronize

(Fig. 12b and Fig. 12c).
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Incommensurate case : q = (0.9, 1, 0.9). Then the char-

acteristic polynomial is

λ28 + 9/20λ19 + 3/4λ18 + 27/80λ9 + 3/5
√
5,

and Λ containing the 28 roots is included in the stability

region Ω (Fig. 13a). αmin = 0.314 > 0.157 = π/20 and

therefore the systems synchronize (Fig. 13b and Fig.

13c).

Remark 6 As can be seen in Fig. 12 and Fig. 13, for

this system, the synchronization is of phase synchro-

nization-like type (see e.g. [21]): occurrence of a cer-

tain relation between the phases of interacting systems,

while the amplitudes remain chaotic and are, in gen-
eral, uncorrelated. In Fig. 14 the value +1 of the cross

correlation determined for the components x1 and y1,

underlines the perfect phase synchronization. Similar

result is obtained for x2 and y2. This phenomenon hap-
pens only with respect to x1,2 and y1,2, while along x3

axis the synchronization is a complete (identical) syn-

chronization.

4.4 Chen-Sprott systems

Finally, let consider the synchronization of two non-

identical systems: a Chen system and a Sprott system.

Let us consider Sprott’s system (27) the master system

and Chen’s system (33) the slave system.
With u1 = −a(y2−y1)+x2−3e1, u2 = −(c−a)s̃gn(y1)+

y3sgn(y1)−cdy2+x3−2e2 and u3 = −y1sgn(y2)+by3−
x1−x2−0.5y3+ s̃gn(x1)−e3, one obtains the following

error system

Dq1
∗ e1 = −3e1,

Dq2
∗ e2 = −2e2,

Dq3
∗ e3 = −e3,

(38)

with the error matrix

E =




−3 0 0
0 −2 0

0 0 −1


 .

Commensurate case : q1 = q2 = q3 = 0.99. The eigen-

values are (−3,−2,−1) and αmin = π > 1.555 = 0.99π/2
(Fig. 15a). Therefore the error sysem is asymptotically

stable and the two systems synchronize (Fig. 15b).

Incommensurate case : q = (0.99, 0.98, 0.97). The char-

acteristic equation is

(λ99 + 3)(λ98 + 2)(λ97 + 1) = 0,

for which αmin = 0.031 > 0.015 = π/200. Therefore
Λ ⊂ Ω (Fig. 15c) and the systems synchronize, Chen’s

system following the master system, Sprott’s system

(Fig. 15d).

5 Conclusion and discussions

In this paper we presented a way to synchronize a class

of piece-wise systems of fractional-order. This is achiev-

able due to the possibility to approximate continuously

the piece-wise functions modeling the underlying sys-

tems. The approximation is realized via Cellina’s The-
orem for set-valued functions, after the piece-wise func-

tions s have been transformed into set-valued functions

with the Filippov’s regularization. There are several ap-

proximation choices. In this paper we use the sigmoid
function, which is easy to implement numerically.

Once the systems approximated, the synchroniza-

tion problem transforms into a synchronization of two

(identical or not) continuous systems of fractional-order.

The known stability results for continuous systems
of fractional-order, have been adapted for our class of

problems.

The sigmoid function used in this paper can be re-

placed with other continuous approximation.
The approximation algorithm can be used for other

purpose too, such as chaos control.

Appendix

A. Cellina’s Theorem

Theorem 3 (Cellina’s Theorem [2] p. 84 and [3] p. 358)
Let F : Rn

⇒ Rn be an u.s.c. function. If the values of F
are nonempty and convex, then for every ε > 0, there exists

a locally Lipschitz single values function fε : Rn → Rn such

that

Graph(fε) ⊂ B(Graph(F ), ε), (A.1)

and for every x ∈ Rn, fε(x) belongs to teh convex hull of the

image of F .

In (A.1), B is the ball in Rn centered on F and of ε ray.
See for example Fig. 1b.
As known, locally Lipschitz functions are also continuous.

B. Proof of Property 1

We shall prove that, for every δ > 0, there exists ε > 0 such
that |s̃gn(x) − 1| < ε. Solving the inequality, one obtains:
x ∈ (−∞,−δln2−ε

ε
)
⋃
(−δln ε

2−ε
,∞). For ε → 0, −δln2−ε

ε

and −δln ε
2−ε

tend to 0. Therefore s̃gn(x) ≈ Sgn(x) for x 6∈
V = (−δln2−ε

ε
,−δln ε

2−ε
) and, consequently, X̃∗ ≈ X∗. ⊓⊔

For ε ∈ {0, 2}, ln is not defined. However, our interest con-
cerns ε 6= 2, 0.

C. Proof of Property 2

We prove that for every δ > 0 there exists ε > 0 such
that | d

dx
s̃gn(x)| < ε. By solving the inequality d

dx
s̃gn(x) =
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2ex/d

δ(ex/d+1)2
< ε (Fig. 5a), one obtains |x| > δln

√
1−2δε+δε−1

δε

(Fig. 5b). On the other side, for x 6= 0, d
dx

sgn(x) = 0. There-

fore, for x 6∈ V = (−δln
√

1−2δε+δε−1
δε

, δln
√

1−2δε+δε−1
δε

),
d
dx

s̃gn(x) ≈ d
dx

sgn(x) and therefore J̃ ≈ J for x 6∈ V. ⊓⊔

Above, beside Assumption (H2), it is supposed that
xisgn(xj), for i, j ∈ 1, 2, ..., n, is differentiable on the interior
of Di.

D. Hausdorff distance

The Hausdorff distance (or Hausdorff metric) DH measures
how far two compact nonempty subsets of the considered met-
ric space Rn are from each other [22]. The Hausdorff distance
between two curves in (here Rn) is defined as the maximum
distance to the closest point between the curves. If the curves
are defined, as in our case, as the sets of ordered pair of co-
ordinates A = {P1, P2, ..., Pm1

} and B = {Q1, Q2, ...,Qm2
}

with Pi = (x1, x2, ..., xn) and Qi = {y1, y2, ..., yn), then DH

is expressed as follows

DH(P,Q) = max{d(P,Q), d(Q,P )},

where d(P,Q) (generally differen to d(Q,P )) has the expres-
sion

d(P,Q) = max
i

{d(Pi, Q)},

and

d(Pi, Q) = max
j

||Pi −Qj ||.
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Fig. 1 a) Graph of f(x) = 2 − 3sgn(x). b) Graph of set-valued function F (x) = 2 − 3Sgn(x) (blue) and continuous approxi-
mation of F (x) (red).

Fig. 2 a) Graph of sgn function. b) Graph of Sgn function.

Fig. 3 Graph of sigmoid function s̃gn. a) Dependence on δ. b) Graph of s̃gn for several values δ.



Synchronization of piece-wise continuous systems of fractional order 11

Fig. 4 Continuous approximation algorithm. Dotted line shows the direct way to approximate the discontinuous components
s.

Fig. 5 a) Graph of d
dx

s̃gn, function on δ. ∆ and ε represent vertical and horizontal planes through some δ and ε values. b)

Graph of d
dx

s̃gn for δ = 1/10 and ε = 0.2 (δ and ε have been chosen larger for a clearer image).

Fig. 6 a) Stability domain Ω determined by αmin > γπ/2. b) Instability domain Φ determined by αmin ≤ γπ/2. d1,2 are
the stability separatrices.
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Fig. 7 Chaotic Piece-wise linear Chen system for: top q = 0.99; bottom q = (1, 0.9, 1). a) Commensurate case q = 0.99,
αmin < 0.99π/2 and the system is unstable. b) The underlying chaotic attractor. c) Incommensurate q = (1, 0.9, 1), αmin <
π/20 and the system is unstable. d) The underlying chaotic attractor.
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Fig. 8 Synchronization of Sprott system for q = 0.92. a) αmin > 0.92π/2 and the error system is stable and synchronization
holds. b) Phase plot of both trajectories (in blue the master system, in red the slave system). c) Time series: left column
t ∈ [0, 200], right column t ∈ [0, 20].
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Fig. 9 Synchronization of Sprott system for q = (0.9, 1, 0.9). a) αmin > π/20 and the error system is stable and synchroniza-
tion holds. b) Phase plot of both trajectories (in blue the master system, in red the slave system). c) Time series: left column
t ∈ [0, 200], right column t ∈ [0, 20].
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Fig. 10 Synchronization of piece-wise Chen system for q1 = q2 = q3 = 0.998. a) αmin > 0.998π/2 and the error system is
stable and synchronization holds. b) Phase plot of both trajectories (in blue the master system, in red the slave system). c)
Time series: left column t ∈ [0, 200], right column t ∈ [0, 20].
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Fig. 11 Synchronization of piece-wise Chen system for q = (0.99, 0.98, 0.97). a) αmin > π/200 and the error system is stable
and synchronization holds. Detail reveal the positions of the roots versus the separatrices. b)Phase plot of both trajectories
(in blue the master system, in red the slave system). c) Time series: left column t ∈ [0, 200], right column t ∈ [0, 20].
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Fig. 12 Synchronization of piece-wise Shimizu-Morioka system for q1 = q2 = q3 = 0.9. a) αmin = π > 0.9π/2 and the error
system is stable and synchronization holds. b)Phase plot of both trajectories (in blue the master system, in red the slave
system). c) Time series: left column t ∈ [0, 200], right column t ∈ [0, 20]. Dotted lines underline phase synchronization.
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Fig. 13 Synchronization of piece-wise Shimizu-Morioka system for q = (0.9, 1, 0.9). a) αmin = 0.314 > π/20 and the error
system is stable and synchronization holds. b) Plot of both trajectories translated along x3 axis (in blue the master system,
in red the slave system). c) Time series: left column t ∈ [0, 200], right column t ∈ [0, 20]. Dotted lines underline phase
synchronization.
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Fig. 14 Cross correlation for the components x1 and y1 of two Shimizu-Morioka synchronized systems. x1 and y1 are in phase
since the value of the cross correlation is +1.

Fig. 15 Synchronization of Sprott’s system and piece-wise Chen’s system. a) For q1 = q2 = q3 = 0.99, αmin > 0.99π/2
and the error system is stable and synchronization holds. b) Phase plot of both trajectories translated along x3 axis (in blue
the master system, in red the slave system). c) For q = (0.99, 098, 0.97), αmin > π/200 and the systems synchronize. Detail
reveals the positions of the roots versus the separatrices. d) Phase plot of both trajectories (in blue the master system, in red
the slave system).




