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In this paper we introduce the fractional-order variant of a Gompertz-like discrete system. The
chaotic behavior is suppressed with an impulsive control algorithm. The numerical integration
and the Lyapunov exponent are obtained by means of the discrete fractional calculus. To verify
numerically the obtained results, beside the Lyapunov exponent, the tools offered by the 0-1
test are used.
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1. Introduction

In the 19th century Benjamin Gompertz originally derived the Gompertz curve to estimate human mortality
[Gompertz, 1825]. Later, the Gompertz equation was used to describe growth processes [Winsor, 1932].
One of the re-parametrisation of the Gompertz model is [Swan, 1990]

1

N(t)

dN(t)

dt
= a ln

( N0

N(t)

)
,

where N(t) represents the number of cells of the tumor.
The disadvantage of the Gompertz model as remarked by Ahmed in [Ahmed, 1992] is that it is not

biologically motivated. Therefore, Ahmed introduced the following dynamical equation:

dN(t)

dt
= −aN(t) + bN(t)2/3. (1)

For an adequate choice of parameters a and b, the growth described by (1) is very close to the Gompertz
equation in the observable region.

The discrete variant of (1) is

Nn+1 = (1− a)Nn + bN2/3
n . (2)

1



August 19, 2019 11:4 revised

2

which, after rescaling, becomes [Ahmed, 1992]

Nn+1 = m(N2/3
n −Nn), (3)

Next, in [Ahmed, 1992] it is shown numerically that (3), via a period doubling bifurcation scenario,
presents a chaotic behavior.

On the other side, in [Codreanu & Danca, 1997] the equation (3) is scaled to obtain the following
discrete system in a more numerically accessible form:

xn+1 = 6.75r(x
2
3
n − xn). (4)

Let next

fr(x) = 6.75r(x
2
3 − x). (5)

Like the logistic map, on [0, 1], fr is unimodal (one of the main chaos ingredients), because fr(0) = fr(1) =
0, fr admits only one extreme (maximum), located inside [0, 1], at the critical point x = 8/27, fr is strictly
increasing on [0, 8/27] and strictly decreasing on [8/27, 1]. However, unlike the logistic map, fr has no
negative Schwarzian derivative [Marek & Schreiber, 1991].

The chaotic behavior of the system (4) can be suppressed using the following periodic variable pertur-
bations [Codreanu & Danca, 1997]:

x(n+ 1) =

{
f(x(n)), n ∈ N,
(1 + γ)x(n+ 1) if mod (n, δ) = 0,

(6)

where f is some map defining a discrete system (fr for the considered system), γ ∈ R represents a relative
small perturbation which is applied at every δ steps. As shown in [Codreanu & Danca, 1997], for adequate
γ and δ, the chaotic behavior can be suppressed.

This simple control algorithm, introduced first in [Guemez & Matias, 1993], has been adapted for
continuous systems of fractional order (FO) [Danca et al., 2016], discontinuous systems of integer order
(IO) [Danca, 2004], discontinuous systems of FO [Danca & Garrappa, 2015; Danca, 2012].

In this paper the algorithm (6) is applied to the FO variant of (4) to suppress the chaotic behavior.
The numerical tools utilized to verify the results are: bifurcation diagram, time series, Lyapunov exponents
and the 0-1 test.

The paper is organized as follows: in Section 2 is presented the discrete FO variant of the system
(4) and in Section 3 presents the numerical results. Section 4 closes the paper and the Appendix section
describes briefly the 0-1 test.

2. The discrete FO system (4)

In order to introduce the FO discrete variant of the system (4), let q ∈ (0, 1), N1−q = {1−q, 2−q, 3−q, · · · },
0 < q ≤ 1 and f ∈ C(R,R) some discrete map. Therefore, FO systems are modeled by the following initial
value problem:

△q
∗x(k) = f(x(k − 1 + q)), k ∈ N1−q, x(0) = x0, (7)

where △q
∗v(k) is the Caputo delta fractional difference [Wu & Baleanu, 2014; Goodrich & Peterson, 2015;

Feckan & Pospisil, 2014].
With f := fr the initial value problem (7) for the considered system, (4), becomes

△q
∗x(k) = 6.75r

(
x(k + q − 1)

2
3 − x(k + q − 1)

)
k ∈ N1−q, x(0) = x0. (8)

Hereafter, the FO discrete equations are considered with initial condition x(0) = x0.
The discrete integral form of (7) as presented in [Wu & Baleanu, 2014] is

x(n) = x(0) +
1

Γ(q)

n−q∑
j=1−q

Γ(n− j)

Γ(n− j − q)
f(x(j − 1 + q)),
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or, similarly

x(n) = x(0) +
1

Γ(q)

n∑
j=1

Γ(n− j + q)

Γ(n− j + 1)
f(x(j − 1)), n = 1, 2, ...

Therefore, the numerical integration of (8) yields

x(n) = x(0) +
6.75r

Γ(q)

n∑
j=1

Γ(n− j + q)

Γ(n− j + 1)

(
x(j − 1)

2
3 − x(j − 1)

)
, n = 1, 2, ..., (9)

which will be the used as the numerical variant of the FO system (8).

Remark 1. Note that due to the discrete memory effect (the present status depends on the all previous
information), one of the main impediments to implement numerically (9), is the divergency of the term∑n

j=1 Γ(n− j + q)/Γ(n− j + 1). Thus, it can be proved that∣∣∣∣ n∑
j=1

Γ(n− j + q)

Γ(n− j + 1)
− nq

q

∣∣∣∣ ≤ 1

q
, n = 1, 2, ... (10)

which means that
∑n

j=1
Γ(n−j+q)
Γ(n−j+1) and (nq) grow similarly. Therefore, for relatively large values of n, small

errors in the steps of (9) may lead to final computational errors. A simple “trick” to increase computation-
ally the iteration number, from only few hundreds to much larger values, is to replace Γ(n−j+q)/Γ(n−j+1)
with eln(Γ(n−j+q))−ln(Γ(n−j+1)).

One can see that considering fr defined on [0, 1], fr : [0, 1] → [0, 1], and r ∈ [0, 1] the bifurcation
parameter, the map graph is like for logistic map within x ∈ [0, 1] (see the graphs for few values of r in
Fig. 1). However, as revealed by the numerical results, xn given by (9), exceeds the value x = 1, namely
xn ∈ [0, 1.5].

Due the discrete memory effect of the numerical approach, the Jacobian matrix necessary for the finite-
time local Lyapunov exponent, denoted hereafter LE, cannot be obtain directly as for the IO systems.
However, by using the natural linearization of (9) along the orbit xn [Wu & Baleanu, 2015], one has

a(n) = a(0) +
6.75r

Γ(q)

n∑
j=1

Γ(n− j + q)

Γ(n− j + 1)
a(j − 1)

(
2

3
x(j)−

1
3 − 1

)
, a(0) = 1. (11)

Next, the numerical determined LE, λ, is obtained as follows:

λ(x0) ≃
1

n
ln |a(n− 1)|.

Let fr,p(x) = 6.75r(xp − x), as depending on two parameters p, r, with p ∈ [0.66, 0.765]. To obtain
a visual perspective of the influence of the power exponent p and r in the IO system (4), consider the
bifurcation diagrams versus p and also versus r (Fig. 2). The LE (red plot) and K value (blue plot) given
by the 0-1 test (Appendix) are superimposed on all bifurcation diagrams. As known, if a system behaves
regularly, K is approximatively zero, while in the case of chaotic dynamics, K is approximatively 1.

The grey fill in bifurcation diagrams indicates the ranges where the system orbits diverge.
Together with the positive values of the LE, the values of K close to 1 indicate the chaotic windows,

while the negative values of LE and K show the numerical periodic windows (see next section for more
details). Note that the values of K, especially for the FO system, present some relative small errors (or
order 1e− 2 for the 0 value and 1e− 3 for 1 value), actually typical for the 0-1 test.

As Figs. 2 a,b and Figs. 3 a,b show, there is a significant difference between the values of the LE of
the IO and FO (compare, e.g., with Fig. 2 in [Wu & Baleanu, 2015]). This difference could be probably
explained by the different dynamics in the FO case compared with the IO case, but also by the memory
history embedded by the relation (11) (see also Remark 1).
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A common characteristic related to p, is the fact that both IO and FO systems present reverse period
doubling bifurcations versus p, indicating the chaos extinction with the increase of p. In the FO case one
can see exterior crises (green vertical dotted lines in Fig. 3).

The bifurcation diagram versus p, unveils the fact that, for the genuine IO system (4), p = 2/3 has
been chosen as the smallest admissible value (for which chaos is strongest). In this paper, p will be set
p = 2/3 (Fig. 3 (a)).

3. Chaos suppressing

Using the common notation xn = x(n), by combining the chaos control algorithm (6) with the numerical
integral (9), one obtains the following algorithm:

xn+1 =

{
x0 +

6.75r
Γ(q)

∑n
j=1

Γ(n−j+q)
Γ(n−j+1)

(
x

2
3
j−1 − xj−1)

)
, n ∈ N

(1 + γ)xn+1, if mod (n, δ) = 0.
(12)

This means that at every δ step (i.e. n is multiple of δ), xn+1 is perturbed with 1 + γ.

Remark 2. Like continuous-time systems of FO, discrete systems of FO cannot have any nonconstant
periodic solution [Diblik et al., 2015]. Therefore one cannot consider that the system (8) admits stable
cycles, but only numerically stable periodic orbits (NSPO) [Danca et al., 2018], i.e. closed trajectories in
the phase space in the sense that the closing error is within a given bound of 1E − n, with n a sufficiently
large positive integer.

To implement numerically the algorithm (12), suppose the parameter r in the FO discrete system (8)
is set such that the system evolve chaotically (here, r = 1). Then, by choosing adequate values of γ and
δ, the algorithm can suppress the chaotic behavior, forcing the system to evolve along an NSPO. Thus,
fixing δ in (12) to some value, to obtain the algorithm parameters values γ which suppress the chaos, one
determines the bifurcation diagram versus γ ∈ [γ1, γ2] where γ1,2 have some relative small values. In this
paper γ1 = −0.1 and γ2 = 0.11. All experiments have been realized for q = 0.8.

The moment n∗ when the algorithm is applied, is marked with vertical dotted lines in the graphs of
time series. 1000 iterations have been considered.

To identify numerically the regular dynamics obtained with the algorithm (see Remark 2), beside the
LE and time series, the data given by the 0-1 test are utilized. Thus, the ranges of γ where the LE is not
positive, K is (close to) zero, the graphs of p and q are disc-like and the graph of M is not divergent (see
Appendix), represent the admissible values of γ for chaos suppressing. Beside the LE (red plot), K (blue
plot), in the time series, the elements of the NSPOs are plotted red.

Consider first δ = 1, i.e., at every step, xn+1 is perturbed with 1 + γ. The bifurcation diagram versus
γ (Fig. 4 (a)) indicates that there are large ranges of γ (numerical periodic windows) for which, any value
γ chosen there, generates an NSPO. For example, for γ = −0.0132 (see the zoomed area), the system is
forced to evolve along the NSPO of 10-period (see the red plot in zoomed area of the time series in Fig. 4
(b)). As can be seen in Fig. 4 (a), for γ within a small neighborhood of −0.0132, LE and K are close to zero
(K = 0.0033), the graph of p and q is disk-like and the mean-square displacement M is not unbounded,
underlying the numerically periodic motion. More clear values of LE and K can be obtained for γ chosen
in the large numerical periodic window, γ = −0.05 (Fig. 4 (c)). Now K = −0.0035. This happens probably
due to an inertia-like phenomenon necessary to LE and especially to K to stabilize for the considered
parameter ranges.

Note that at least two crisis can be remarked (vertical green dotted lines).
For e.g. δ = 3, i.e., xn+1 is perturbed only every third steps, there still exist numerically periodic

windows where the chaos is suppressed but, as expected, their size is smaller (see Fig. 5, where for γ = −0.04
a numerically 5-period orbit is obtained) and K = −0.0048. Again, the graph of p and q is disk-like and
M has a bounded evolution.

1The algorithm can be tested empirically too, by testing values of γ or δ until the chaos is suppressed.
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The largest value of δ for which the system still can be controlled is δ = 5 (Fig. 6). For γ = −0.0722
an NSPO with a large 19-period is obtained. In this case K = 0.0317.

For larger values of δ, no NSPOs are found.
Note that other possible variants of (12) can be considered and implemented in practice, such as

xn+1 =

{
f(xn), n ∈ N,
xn+1 + γ if mod (n, δ) = 0,

(13)

which, for e.g. δ = 2 and |γ| ≤ 0.5, has the symmetric bifurcation diagram in Fig. 7.

4. Conclusion and discussion

In this paper we introduced the FO variant of a biological discrete system, modeled with Caputo’s deriva-
tive. Also, a control algorithm to suppress the chaotic behavior is presented. The numerical integration of
the system was made by using the discrete integral presented in [Wu & Baleanu, 2014]. Under the action
of the control algorithm, the chaotic behavior of the system can be transformed into regular motion, i.e.
orbits which are numerically apparent stable periodic (as known, both continuous and discrete FO systems
admit no stable periodic orbits).

Every δ steps, the algorithm impulses periodically the system variable xn+1, in such a way that xn+1 =
xn+1(1 + γ) with γ chosen from the bifurcation diagram versus γ.

Note that this kind of perturbations can rarely happen in nature, but with positive probability, when
some system accidently perturbs periodically its variables.

While for most of continuous-time systems, there are relatively small differences between the IO and
their FO variants, in the case of the discrete system (4) there are some notable differences which could also
characterize other discrete systems. Thus, compared to IO variant of the system, (4), for which the LE has
an expected evolution for IO discrete systems (with relative large negative and positive values (Fig. 2)),
in the case of the considered FO system (8), for all considered numerical experiments, the negative values
of the LE are actually constant and close to zero for relatively large ranges of γ (see also [Xin et al., 2017;
Wu & Baleanu, 2015]). The question if the LE is really negative, or is zero, remains an open problem.

Like for IO systems, the K value given by the 0-1 test, presents oscillations in some critical ranges
of γ. Also, due to the inherent numerical characteristics of the results of the test 0-1 or, probably due to
NSPOs (Remark 2), the errors in calculating the 0 value is relatively larger (1e − 2) than the errors in
calculating 1, which is 1e− 3.

All experiments with the algorithm (12) revealed that only negative values of γ allow the chaos sup-
pression, suggesting that the underlying system must free energy every δ steps to evolve along some NSPO.
On the other side, the algorithm (13) allows the chaos suppression for both negative and positive values,
which means that the system can be stabilized by either lose or gain energy.

Another open problem regards the performances of the numerical integration of FO discrete systems
(see Remark 1). Finding and using other numerical integrals of (7) could improve the obtained numerical
results.

Appendix

The ’0-1’ test has been developed in [Gottwald & Melbourne, 2004], being designed to distinguish chaotic
behavior from regular behavior in continuous and discrete systems. The input is a time series, the test
being easy to implement. Note it does not need the system equations. Let a discrete or continuous-time
dynamical system (of IO or FO) and a one-dimensional observable data set be determined from a time
series, ϕ(j), j = 1, 2, ..., N , with N some positive integer. It is proved that the test states that a nonchaotic
motion is bounded, while a chaotic dynamic behaves like a Brownian motion [Nicol et al. , 2001]. To obtain
the four elements generated by the test, the asymptotic growth K, p, q, and the mean-square displacement
M , the following steps are to be determined:
1) First, for c ∈ [0, 2π], compute the translation variables p and q [Gottwald & Melbourne, 2004]:
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p(n) =

n∑
j=1

ϕ(j) cos(jc), q(n) =

n∑
j=1

ϕ(j) sin(jc),

for n = 1, 2, ..., N . However, c can be chosen for example within a narrow interval [π/5, 4π/5] as mentioned
in [Gottwald & Melbourne, 2009].
2) Next, in order to determine the growths of p and q, the mean-square displacement M is determined:

M(n) = lim
N→∞

1

N

N∑
j=1

[p(j + n)− p(j)]2 + [q(j + n)− q(j)]2.

where n ≪ N (in practice, n = N/10 represents a good choice).
3) The asymptotic growth rate K is defined as

K = lim
n→∞

logM(n)/ log n.

If the system dynamics is regular (i.e. periodic or quasiperiodic) then K ≈ 0, otherwise, if the underlying
dynamics is chaotic, K ≈ 1.

Note that, recently, the 0-1 test has been used successfully to identify strange nonchaotioc attractors
[Gopal et al., 2013].

Figs. 8 present the case of the logistic map xn+1 = rxn(1 − xn). In Figs. (i) and (ii), the cases of
r = 3.55, when the system behaves regularly, and r = 3.9, when the system behaves chaotically, are
considered, respectively. Figs. (a) and (b) show the graph of p, q and M , respectively.
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Diblik, J., Fe ckan, M., Posṕı̌sil, M. “Nonexistence of periodic solutions and S-asymptotically periodic
solutions in fractional diff erence equations”, Appl. Math. Comput. 257, 230-240.

Danca M.-F., Feckan M., Kuznetsov N. and Chen G. [2018] “Fractional-order PWC systems without zero
Lyapunov exponents”, Nonlinear Dynam., 92(3), 10611078.

Gottwald G., Melbourne I. [2004] “A new test for chaos in deterministic systems”, Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences 460(2042)603–611.

Gottwald G., Melbourne I. [2009] “On the implementation of the 0-1 test for chaos”, SIAM J. Appl. Dyn.
Syst. 8(1) 129–145.

Gopal R., Venkatesan, A. and Lakshmanan M. [2013] “Applicability of 0-1 test for strange nonchaotic
attractors”, Chaos 23, 023123.

Baogui Xin, Li Liu, Guisheng Hou, Yuan Ma [2017] “Chaos Synchronization of Nonlinear Fractional Dis-
crete Dynamical Systems via Linear Control”, Entropy 19(7), 351.

Danca M.-F. [2004] “Controlling chaos in discontinuous dynamical systems”, Chaos Soliton Fract. 22(3)
605-612.



August 19, 2019 11:4 revised

8 REFERENCES

Fig. 2. Bifurcation diagrams of the map fr,p. (a) Bifurcation diagram of the fr,p versus p; (b) Bifurcation diagram of fr,p
versus r.
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Fig. 3. Bifurcation diagrams of the FO system (8); (a) Bifurcation diagram versus p; (b) Bifurcation diagram versus r; (c)
Bifurcation diagram versus q.



August 19, 2019 11:4 revised

10 REFERENCES

Fig. 4. Chaos suppression of the FO system (8) for δ = 1, applied after n = n∗; (a) Bifurcation diagram versus γ. The zoomed
area in the time series reveals the chosen value of γ: γ = −0.0132; (b) Time series revealing the ten elements of the NSPO
(red plot); (c) Graph of p, q; (d) Graph of M ; (e) Chaos suppression for γ = −0.05. Time series reveals the four elements of
the NSPO (red plot); (f) Graph of p, q; (g) Graph of M .
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Fig. 5. Chaos suppression of the FO system (8) for δ = 3 and γ = −0.04; (a) Bifurcation diagram versus γ; (b) Time series
for γ = −0.04; (c) Zoomed area revealing the six elements of the NSPO (red plot); (d) Graph of p, q; (e) Graph of M .
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Fig. 6. Chaos suppression of the FO system (8) for δ = 5 and γ = −0.0722; (a) Bifurcation diagram versus γ; (b) Time series
with a zoomed area showing the 19-period orbit of the obtained NSPO (red plot in Fig. 6 (c)); (d) Graph of p, q; (e) Graph
of M .
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Fig. 7. Chaos control of the FO system (8) obtained with the algorithm (13), δ = 2. The bifurcation diagram versus γ shows
a symmetry allowing beside negative for γ, positive values too.
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Fig. 8. The 0-1 test applied to the logistic map xn+1 = rx(1− x); (a) Graphs of p, q; (b) Graphs of M ; (i) The case r = 3.5;
(ii) The case r = 3.9.


