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The parameter perturbation methods �the most known being the OGY method� apply small wisely
chosen swift kicks to the system once per cycle, to maintain it near the desired unstable periodic
orbit. Thus, one can consider that a new attractor is finally generated. Another class of methods
which allow the attractors born, imply small perturbations of the state variable �see, e.g., J. Güémez
and M. A. Matías, Phys. Lett. A 181, 29 �1993��. Whatever technique is utilized, generating any
targeted attractor starting from a set of two or more of any kind of attractors �stable or not� of a
considered dissipative continuous-time system cannot be achieved with these techniques. This kind
of attractor synthesis �introduced in M.-F. Danca, W. K. S. Tang, and G. Chen, Appl. Math.
Comput. 201, 650 �2008� and proved analytically in Y. Mao, W. K. S. Tang, and M.-F. Danca,
Appl. Math. Comput. �submitted�� which starts from a set of given attractors, allows us, via periodic
parameter-switching, to generate any of the set of all possible attractors of a class of continuous-
time dissipative dynamical systems, depending linearly on the control parameter. In this paper we
extend this technique proving empirically that even random manners for switching can be utilized
for this purpose. These parameter-switches schemes are very easy to implement and require only
the mathematical model of the underlying dynamical system, a convergent numerical method to
integrate the system, and the bifurcation diagram to choose specific attractors. Relatively large
parameter switches are admitted. As a main result, these switching algorithms �deterministic or
random� offer a new perspective on the set of all attractors of a class of dissipative continuous-time
dynamical systems. © 2008 American Institute of Physics. �DOI: 10.1063/1.2965524�

In Ref. 1, the attractors of a considered dissipative
continuous-time system were synthesized using determin-
istic manners for parameter switches. In this paper we
extend these results and prove numerically that the
parameter-switching techniques work even if random
switching manners are utilized. The synthesized attractor
is identical to one of the existing attractors obtained by
integration of the mathematical model for a precise pa-
rameter value. Moreover, these techniques (deterministic
or random) reveal a vector spacelike structure of the hy-
perbolic attractors. Numerical simulations illustrate that
a wide range of attractors can be obtained by this
scheme. Since any of the existing attractors can be syn-
thesized with these techniques, chaos control and anticon-
trol can be viewed as attractor synthesis via parameter-
switching techniques.

I. INTRODUCTION

Let us consider a class of continuous-time autonomous
dissipative dynamical systems depending linearly on a single
real parameter, modeled by the following general initial
value problem �I.V.P.�:

S:ẋ = fp�x�, x�0� = x0, �1�

where p�R and fp :Rn→Rn has the expression

fp�x� = g�x� + pAx , �2�

with g :Rn→Rn a continuous-time nonlinear function, A a
real constant n�n matrix, x0�Rn, and t� I= �0, � �.

It is supposed that the existence and uniqueness of solu-
tions on the maximal existence interval I= �0, � � are as-
sumed, and that there exists only hyperbolic equilibria.

The synthesis of hyperbolic attractors of dynamical sys-
tems modeled by I.V.P. �1� by periodic parameter-switching
is presented in Ref. 1. This technique, empirically proved,
continues a sequence of works dealing with the parameter
switches. Thus, switching schemes was introduced in
Refs. 2–4.

Empirically proved by various experiments, a desired
attractor of a considered system modeled by Eq. �1�, can be
duly numerically synthesized by a proposed switching deter-
ministic time-varying scheme; each step-size of the numeri-
cal method to I.V.P. �1�, p is switched in a deterministic
manner between a set of chosen values of p.

The obtained attractor is one of the existing attractors
belonging to the set of all possible attractors of the system
modeled by Eq. �1�. Moreover, the most interesting is the
fact that the synthesized attractor can be obtained directly by
numerical integration of Eq. �1� for p given by a precisely
linear combination of the considered switching values of the
parameter.

In this paper we extend this subject and prove numeri-
cally that even random manners of the parameter switches
lead to the same result: any hyperbolic attractor depending
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on p can be synthesized by these kind of switches, either
deterministic or stochastic.

The paper is organized as follows: In the next section,
the deterministic parameter-switching scheme is described.
In Sec. III the random synthesis of the attractors is presented.
Finally, in Sec. IV, some concluding remarks are given and
some issues for future works are discussed.

II. DETERMINISTIC SYNTHESIS

Notation 1: Let A the set of all global attractors de-
pending on parameter p �the attractors not depending on p
are not considered�, including attractive stable fixed points,
limit cycles, and chaotic attractors. Let also P�R be the set
of the corresponding admissible values of p. Denote by PN

= �p1 , p2 , . . . , pN��P a finite ordered subset of P containing
N different values of p, which determines the set of attractors
AN= �Ap1

,Ap2
, . . . ,ApN

��A.
As it is known, for some fixed initial condition, a con-

vergent numerical method simulates one of the local attrac-
tors belonging to the global attractor �see the Appendix�.
More precisely, the �-limit set is obtained �see the Appen-
dix�. Therefore, in this paper by attractor one understands its
�-limit set, actually its approximation, which as usual,5 is
considered after neglecting a sufficiently long period of tran-
sients.

Because of the dissipativity, A is nonempty. It then fol-
lows naturally that a bijection between P and A, can be
defined. Thus, giving any p�P, there exists a unique attrac-
tor, and vice versa.

A major aspect in this paper is to compare the numeri-
cally synthesized attractors. The geometric structure of at-
tractors can be very complicated. Therefore, it is extremely
difficult, if not impossible, to determine the position of a
chaotic attractor in the phase space. Also that appears to be
true even for an equilibrium point or a periodic trajectory in
general.

Recognizing these difficulties in comparing attractors,
the following simple and practical criterion is introduced.

Criterion 2: Two attractors are considered to be �al-
most� identical if

�i� their geometrical forms in the phase space coincide;
�ii� the sense of the motion in time is preserved.

Criterion 2 represents a suitable modification of the
known concept of topological equivalence �see, e.g., Ref. 6�
being useful for practical use rather than for theoretical rigor.

This above geometrical identity concept, aided by phase
representations, histograms, and Poincaré sections, serves
well for the attractors computer graphic inspection. However
the situation becomes complicated for chaotic attractors �see,
e.g., Ref. 7�. In this case, the “almost” identity would be
justified by a geometric coincidence of their branched mani-
folds �see Ref. 8� near the preserved sense of motion in time
on the trajectories.

Remark 3: (i) The term almost in criterion 2 refers sim-
ply to the case of chaotic attractors where the similarity
between two chaotic attractors may arise only asymptotically
for t→�.

(ii) Using criterion 2, the invariance under the changes
of control-parameter values of branched manifolds is
avoided, and thus, the objectivity between P and A follows
logically. Also, the use of some inherent tools of topological
characterization �considering, for example, the shape of an
attractor, it is possible to have two attractors possessing the
same shape and however being different in the sense of cri-
terion 2� or dimensions related to the comparison of attrac-
tors (see, e.g., Refs. 6, 7, and 9–11� can be avoided.

Given a convergent numerical method for I.V.P. �1� and a
convergent numerical method, for a fixed step-size h, the
following conjecture can be introduced, the analytical proof
being presented in Ref. 12.

Conjecture 4: For any finite set AN of attractors, cor-
responding to PN there exists an attractor A* generated by
numerical integration of Eq. (1) with switching parameter p
in PN upon certain rules. Moreover, A*�A, and A* is (al-
most) identical to an attractor Ap�A corresponding to a
specific value p given by

p =
�k=1

N p��k�mk

�k=1
N mk

. �3�

In order to see what mk and p��k� do represent let us
consider a partition of I, I=�i�N*�ti−1 , ti�, with t0=0, such
that ti= jh, for i , j�N, where h is the integration step of the
considered numerical method. Then, the switching synthesis
rule in conjecture 4 can be codified as the following: �m1

+m2+ ¯ +mN�h-periodic sequence:

�m1p��1�, m2p��2�, . . . ,mNp��N�� , �4�

where the weights mi are some positive integers and � per-
mutes the subset �1,2 , . . . ,N�.

It is known that under a variety of Lipschitz conditions
some numerical methods for ODEs defines a dynamical
system.13 Thus, under the assumptions on the existence and
uniqueness on the I.V.P. �1�, we are entitled to compare the
dynamical system defined by the numerical approximation to
I.V.P. �1� with the underlying dynamical system itself.

Scheme �4� represents the deterministic time-periodic
way to synthesize the hyperbolic attractors of the dynamical
system modeled by I.V.P. �1� and has the following signifi-
cance: the considered numerical method will integrate Eq.
�1� with p= p��1� for the first m1 steps, and then with p= p��2�
in the next m2 steps, and so on, until the last Nth subinterval.
Then the cycle is repeated on the next N subintervals so that
a periodic parameter-switching scheme is obtained.

For example, the sequence �2p1 ,3p3 ,5p2� indicates that,
for the first 2 integration steps, p= p1, and then for the next 3
integration steps, p= p3, and for the last 5 steps, p= p2. After
that, the cycle is repeated again, i.e., �2p1 ,3p3 ,5p2� should
be understood as being the following periodical sequence:

2p1,3p3,5p2,2p1,3p3,5p2, . . . . �5�

Example 5: For example, the scheme �5� applied to the
Lorenz attractor for p1=125, p2=140 and p3=175 corre-
sponding to chaotic movements [Figs. 1(a)–1(d)] with the
weights m1=2, m2=3 and m3=3 and h=0.0005 using the
standard Runge–Kutta method, generates the attractor A*.

033111-2 Marius-F. Danca Chaos 18, 033111 �2008�



Moreover, A* is identical to the attractor Ap with p given by
the formula (3), i.e., p= �m1p1+m2p3+m3p2� /
�m1+m2+m3�=149.375. The phase portrait and histogram,
superimposed �Figs. 1(e) and 1(f)� show this identity.

If we denote �k=mk /�k=1
N mk, �k verifies the affine com-

bination, ��k=1 and based on the bijection between P and
A and the following formula �4�, we could endow A with
two binary abstract operations � and � such that conjecture
4 could be reformulated as follows:

Conjecture 6: A�A, if and only if there exist N positive
integers mk ,k=1, . . . ,N, such that

A = �1 � Ap1
� �2 � Ap2

� ¯ � �N � ApN
,

�6�

Apk
� A, �k = mk��

k=1

N

mk.

FIG. 1. �Color online� Periodic stable attractor �limit cycle� of the Lorenz system. �a� Bifurcation diagram. �b�–�d� Phase plots of three chaotic attractors
corresponding to p1=125, p2=140, and p3=175. �e� The synthesized attractors A* and Ap, with p=149.375, superimposed. �f� Histograms of A* and Ap

superimposed.
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In other words, if one considers a set AN of N attractors
there exists a set of N positive integers m such that the right-
hand side of the affine relation �6� generates, via Eq. �4�, an
attractor A* which is almost identical to an attractor A�A
corresponding to a specific parameter p�P and reversely for
any attractor A there exist a set of N positive integers m and
a set AN of N attractors such that A can be decomposed as in
Eq. �6�.

Remark 7: (i) If p is a rational nonterminating (repeat-
ing) decimal number, or has the decimal number greater
than the computer internal representation, due to computa-
tional numerical errors, some relative small differences can
appear in between the two attractors, A* and Ap.

(ii) Let an ordered set PN= �pmin, . . . , pmax�. The resultant
averaged p, given by Eq. (3), is located, obviously, inside the
interval �pmin, pmax�, i.e., pmin� p� pmax. Thus, if PN is cho-
sen within a chaotic/periodic band in the bifurcation dia-
gram, the resultant attractor will also be chaotic/periodic.
But, if PN covers disjoint bands, the resultant attractor could
be of any type. For example, if N=2, A* will be situated, in
the parameter space, between the attractors Ap1

and Ap2
. In

this manner, the control and anticontrol of chaos can be
achieved (see Ref. 1).

(iii) Generally, for fixed x0 and h, Eq. (4) is not “com-
mutative,” i.e., �m1p1 ,m2p2� and �m2p2 ,m1p1� generally give
different attractors.

The deterministic scheme �4� can be described algorith-
mically as described in Algorithm 1.

Algorithm 1
repeat

for k=1 to m1 do
integrate IVP with p= p1

for k=1 to m2 do
integrate IVP with p= p2

]

for k=1 to mN do
integrate IVP with p= pN

t= t+h
until t≥T

Example 8: The scheme (4) can be utilized as an anti-
control technique in the following way: suppose we want to
obtain a chaotic Chen attractor (see the Appendix� A* start-
ing from two stable periodic attractors Ap1

and Ap2
[Figs.

2(a) and 2(b)] corresponding, e.g., to p1=23.014 and

FIG. 2. �Color online� Synthesis of a chaotic Chen attractor. �a�, �b� Two periodic attractors. �c� The synthesized attractor. �d� Ap and A* superimposed. �e�
Poincaré sections of Ap and A* superimposed.
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p2=26.05. Because between p1 and p2 there is a relative
large chaotic window in the bifurcation scenario, with m1

=m2=1 the resulting p given by Eq. (3), p= �p1

+ p2� / �m1+m2�=24.532 indicates a chaotic attractor. Thus
the synthesized attractor A* [Fig. 2(c)] obtained with the
sequence �1p1 ,1p2� is (almost) identical to Ap. In Fig. 2(d),
both A* and A24.532 are plotted superimposed, while in Fig.
2(e) the Poincaré section underlines the identity.

Example 9: A chaotic attractor for the Rabinovich–
Fabrikant system (see the Appendix� and which represents a
real challenge to integration numerical methods, can
be obtained even with a complicate scheme
�2p1 ,3p5 ,4p4 ,5p2 ,6p3� with p1=0.3, p2=0.98, p3=1, p4

=1.15, and p5=1.285 [Figs. 3(a)–3(e)]. The synthesized at-
tractor A* is almost (see Remark 3 i) identical to A0.99775,
where 0.99775= �2p1+3p5+4p4+5p2+6p3� /20 [Figs. 3(f)
and 3(g)].

Summarizing, one can imagine the following relation-
ships:

D�p1,p2, . . . ,pN� → A*→
�3�

Ap,

where D represent some deterministic and periodic rule for
changing pi when integrating I.V.P. �1�.

III. RANDOM SYNTHESIS

While in the above examples the synthesis scheme was
applied in a deterministic manner, random choices too in Eq.
�4� confirm his rightness. Thus, one of the first random veri-
fied variants is that when pi, i=1, . . . ,N are chosen in a ran-
dom order in Eq. �4� �see Algorithm 2�.

Algorithm 2
mpi

=0, i=1, . . .N
while t�T do

label=rand�N�
case label of

1: GOTO label 1
2: GOTO label 2
. . .
N: GOTO label N

label 1: for k=1 to m1 do
integrate IVP with p= p1

inc�mp1
�

label 2: for k=1 to m2 do
integrate IVP with p= p2

inc�mp2
�

. . .

FIG. 3. �Color online� Deterministic synthesis of a chaotic Rabinovich–Fabrikant system. �a�–�e� Five attractors. �f� The synthesized attractors Ap and A*

superimposed. �g� Superimposed Poincaré sections of Ap and A*.
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label N: fork�1 to mN do
integrate IVP with p= pN

inc�mp3
�

t= t+h

where rand�N� generates a random number between 1 and N
and mpi

represent the counter for integration of IVP for each
pi, i=1, . . . ,N. In this case for p we have the following rela-
tion:

p =
mp1

p1 + mp2
p2 + ¯ + mpN

pN

mp1
+ mp2

+ ¯ + mpN

. �7�

Example 10: For the Rabinovich–Fabrikant system (see
the Appendix� if one chose N=3, p1=1.285, p2=1.01, p3

=1.195, m1=2, m2=3, m3=4, the resulted attractor A* is
identical to Ap with p given by Eq. (7) p= �mp1

p1+mp2
p2

+mp3
p3� / �mp1

+mp2
+mp3

�=1.145 855 361 285 536 12. In
Fig. 4(a), A1.14. . . and A* are plotted superimposed, while in
Fig. 4(b) the histograms superimposed are presented. With
h=0.001, T=400 from Algorithm 2 one obtains mp1
=63 972, mp2

=12 940 and mp3
=60 944.

Another simple possibility to implement randomness is
to attribute to p the values pi for a random number of steps
size h �see Algorithm 3�.

Algorithm 3
repeat

for k=1 to rand�m1� do
integrate IVP with p= p1

inc�mp1
�

for k=1 to rand�m2� do
integrate IVP with p= p2

inc�mp2
�

]

for k=1 to rand�mN� do
integrate IVP with p= pN

inc�mpN
�

t= t+h
until t�T

Example 11: For example, for the Rossler system (see
the Appendix� with p1=18, p2=25, p3=31, and m1=2, m2

=4 and m3=3, the synthesized attractor A* is almost identi-
cal to Ap (Fig. 5) with p=26.365 452 691 obtained with Eq.
(7). For this system, special attention should be paid because
of his sensitivity on the computed results as pointed out in
Ref. 14.

Example 12: A stronger stochastic way could be ob-
tained if both the order of pi and the number of times when
p= pi are changed randomly (i.e., combining Algorithm 1

FIG. 4. �Color online� Random synthesis of a limit cycle of the Rabinovich–Fabrikant system. �a� A* and Ap superimposed. �b� Histograms of A* and Ap

superimposed.
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and 2). In this case for the Chen system with p1=23,p2=24,
and p3=32 and m1=7, m2=3 and m3=4, A* is (almost) iden-
tical to A24.067 659 198 (Fig. 6).

For the random manners of dealing with pi in Eq. �4� one
can imagine the following relationships:

R�p1,p2, . . . ,pN� → A*→
�7�

Ap, �8�

where R represents some random rule to fix pi.
Remark 13: (i) The functions used in our simulations to

generate random numbers are the known random function
with uniform distribution existing in all compilers.

(ii) In the cases of the random schemes, the limitations
of the internal representations, may lead to relative small
difference between A* and Ap.

(iii) Let Ri, i=1,2 , . . . ,M be M random different algo-
rithms and A

i
*=Ri�p1 , p2 , . . . , pN�, i=1,2 , . . . ,M [relation

(8)]. Then A
j
*�A

k
* for any j�k, j ,k� �1, . . . ,M�. This obvi-

ously follows from Eq. (7). Thus, for example, for Chen’s
attractor with p1=23, p2=24 and p3=32 using the Algorithm
2 one obtains p=24.121 540 068 while Algorithm 3 gives p
=24.067 659 198.

(iv) While deterministic switches techniques can explain
and even achieve the control and anticontrol of chaos, the
random algorithms are useless in control or anticontrol since
we cannot precisely calculate in advance the synthesized p.

(v) Let m=max�m1 , . . . ,mN�. If m has a relatively large
value, then A* still remains in a relatively small neighbor-
hood of Ap but its trajectory presents some corners.

IV. CONCLUSIONS AND DISCUSSION

In this paper we have proved numerically that any hy-
perbolic attractor of a dynamical system modeled by the
I.V.P. �1� can be considered synthesized via the periodic �or
random� switching scheme �4� of p.

FIG. 5. �Color online� Random synthesized attractor of the Rössler system. �a� Ap and A* superimposed. �b� Superimposed Poincaré sections of Ap and A*.

FIG. 6. �Color online� Random synthesized attractor of the Chen system. �a� Ap and A* superimposed. �b� Superimposed Poincaré sections of Ap and A*.
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Supported by intensive simulations, the scheme �4� is
viable for large limits of the weights m and for any admis-
sible values of the parameter p.

The novel and main result presented in Ref. 1 and ex-
tended in the present paper is the fact that the set of all
attractors of a dynamical system modeled by Eq. �1� can be
regarded as a vector spacelike, where each vector �attractor�
can be expressed as a combination of a finite set of different
vectors �attractors�. The analytical proof remains a task for a
future work.

As an interesting fact, the deterministic parameter-
switching �see Remark 13 iv� can be considered as a very
simple and suggestive explanation of attractors born in the
control and anticontrol of chaos, the only condition being the
alternation of the order and chaotic windows in the bifurca-
tion space, condition generally verified by the dynamical sys-
tems. Thus, in Example 5 between p=125 and p=175, there
exist several chaotic and periodic windows. To realize the
control/anticontrol for given attractors Ap1

, Ap2
, . . . ,ApN

in
Eq. �3� one can fix a desired p and solve the equation in the
two unknowns m1 , . . . ,mN. For example, the Lorenz control
�Fig. 1� was realized by choosing m1 and m2 and p=150 in a
periodic window in the bifurcation diagram. Solving Eq. �3�
one obtains m3= �80 /25�=3. Recalculating p one finally ob-
tains p=149.375. Other methods to solve Eq. �3� can be
used, as a function of the given attractors Api

, or mi.
In the presented synthesis algorithm, the values for p

which make the system unstable, can be chosen too because
of relative short periods of time �m step-size with m rela-
tively small number�.

If one denotes by 	 a trajectory of a given dynamical
system modeled by the I.V.P. �1�, 	 can be symbolized, for a
considered numerical method, step-size h, and the sets
�p1 , p2 , . . . , pN� and �m1 ,m2 , . . . ,mN� as a periodic infinite se-
quence. For example, for the Chen’s attractor A26.25 the cor-
responding trajectory can be symbolized as follows:

	 = p1,p2,p1,p2, . . . .

Thus, apparently paradoxical, chaotic trajectories �and
inherently their underlying chaotic attractors� can be repre-
sented as symbolized by an infinite periodic sequence of p
and periodic trajectories can be symbolized as a stochastic
sequence of p.

Because of the nonuniqueness of the representations of
rational numbers �3� these representations are not unique;
each p may have infinity fractions of Eq. �3� like represen-
tations.

One impediment is the fact that adaptive step-size nu-
merical methods circumvent the use of Eq. �3�.

APPENDIX: NOTIONS AND UTILIZED SYSTEM
MODELS

First, we give the notions related to the global, local
attractors and �-limit set. Then the models of the dynamical
systems considered in this are presented.

1. Attractors and �-limit set

Definition 14: A global attractor of S is a compact set
composing of all bounded global trajectories.

There is vast literature concerning the existence of glo-
bal attractors especially in the field of PDEs �we mention,
e.g., Refs. 15–19�, but it is a useful notion for ODEs too.

From the definition, a global attractor contains all the
dynamics evolving from all possible initial conditions. In
other words, it contains all solutions, including stationary
solutions, periodic solutions, as well as chaotic attractors,
relevant to the asymptotic behaviors of the system.

Definition 15: A local attractor is a compact set, invari-
ant under f, which attracts its neighboring trajectories.

A global attractor is hence considered as being com-
posed of the set of all local attractors, where each local at-
tractor only attracts trajectories from a subset of initial con-
ditions, specified by its basin of attraction. Therefore, for a
fixed parameter p, different local attractors may be obtained
depending on the choice of the initial condition x0, in con-
trast to the uniqueness of the case of a single global attractor.

For example, if one considers the Lorenz system with
p=2.5, there are three local attractors: the origin �saddle� and
two symmetrical fixed points �sinks� X1,2�
2, �2,1.5�. In
some cases, a unique local attractor may also be the global
one. For example, when p=28, there exists only a single
local attractor, which is a global attractor too �known as the
Lorenz strange attractor�.

When a global attractor is composed by several local
attractors, the initial conditions are essential for the numeri-
cal approximations of one of these attractors.

Definition 16: The �-limit set of a trajectory through
x�Rn is given as ��x�=�s�0�t�s��t ,x�.

2. Utilized dynamical systems

The dynamical equations of the four utilized systems
are, as follows:

Chen’s system:20

ẋ1 = a�x2 − x1�, ẋ2 = �p − a�x1 − x1x3 + px2,

ẋ3 = x1x2 − bx3,

with parameters a=35 and b=3, while p is chosen as the
control parameter here.

Referring to Eq. �2�, one has

g�x� = 	 a�x2 − x1�
− x1x3 − x2

x1x2 − bx3

, A = �0 0 0

1 0 0

0 0 0
� .

Lorenz system:

ẋ1 = a�x2 − x1�, ẋ2 = x1�p − x3� − x2,

ẋ3 = x1x2 − cx3,

with a=10 and c=8 /3, and p again is the control parameter.
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Rössler system:

ẋ1 = − x2 − x3, ẋ2 = x1 + ax2,

ẋ3 = b + x3�x1 − p� ,

with a=b=0.1, and p is the control parameter.
Rabinovich–Fabrikant:21

ẋ1 = x2�x3 − 1 + x1
2� + ax1, ẋ2 = x1�3x3 + 1 − x1

2� + ax2,

ẋ3 = − 2x3�p + x1x2� ,

where a is set to 0.1.
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