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Abstract

In this paper, we provide a mathematical justification to explain the dynamics of chaotic
system with periodic time-varying parameter which have been illustrated by some of us
in a previous paper [1]. Based on an equivalent averaging model, it is proved that such
a parametric time-varying system follows the same trajectory of its averaging model,
provided that the parameter is varied periodically with a sufficiently high frequency.
Some other observations related with this class of chaotic systems are also remarked in
this paper.
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1. Introduction

System with parameter variations have aroused a lot of intersets, not only because
of its importance in applications, but also due to its attractive complex dynamics for
theoretical analysis. Many studies have been reported for the stability issues of switched
linear and nonlinear systems [2, 3, 4]. The uses of switching dynamics have also been
explored, such as, to generate complex attractors by switching system parameters [1], to
achieve synchronization and control [5], to name a few. Recently, similar studies have
also been extended to complex networks, for which time-varying topologies are in concern
[6, 7].

In this paper, we are interested in studying analytically the behaviour of a chaotic
system with periodic time-varying parameter. Extensive simulations have been carried
out in [1, 8, 9], showing that such a system acts similarly as its corresponding averaging
model. In [1, 9] it is illustrated with numerical simulations that attractors of a chaotic
system can be synthesized by switching a parameter periodically. A similar switching
algorithm was used in [8] where a random switching rule has been applied.

Our analysis is mainly carried out based on the averaging theory [10]. In classical
averaging theory, a system is assumed to be expressed as ẋ = λf(t, x), where λ is a small
parameter representing the term of “slowness” governing the time scale of slow evolution
of system parameters, and f is n-dimensional and T-periodic (or is a KBM-vector field)
[10]. It is found that its solution and that of the corresponding average model, taking
the form ẋ = λf0(x), with f0(x) is the average value of f(x, t), present a difference of
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O(λ). This averaging principle has also been extended to partial differenital equations,
integro-differential equations, infinite-dimensional system, time delay systems and so on
(see examples in [4, 11, 12, 13]).

However, chaotic systems cannot be reformulated in the standard form or its variants,
as the function is not periodic but the parameter is. Hence, it is the objective of this
paper to establish a theory to prove analytically that chaotic systems with periodically
varying parameter remains close enough to the trajectory that evolves from its equivalent
average model, provided that the period of the change of parameter is sufficiently small.

The organization of this paper is as follows. In Sect. 2, the main theorem is given and
proved. Simulations for some typical chaotic systems, including Chua’s circuit and Chen
system are then presented in Sect. 3, demonstrating the effect of parametric oscillation
and some particular remarks are given. Finally, conclusions are drawn in Sect. 4.

2. Average Model for Nonlinear System with Periodic Time-Varying Param-
eter

Consider a class of nonlinear continuous-time and dissipative systems given in the
following form:

ẋ(t) = f(x(t)) + p(t/λ)Bx(t), x(0) = x0, (1)

where x ∈ <n is the state vector; f : <n → <n is a sufficiently smooth vector field on
<n to assure the existence and uniqueness of solution; t ∈ I = [0,∞); B ∈ <n×n is a
constant matrix; and p : I → R is a periodic function of period T having a mean value
of q, i.e.

1
T

∫ t+T

t

p(u)du = q ∀t ∈ I. (2)

and define an average model of (1) expressed as follows:

ẏ(t) = f(y(t)) + qBy(t), y(0) = y0, (3)

where y ∈ <n is the state vector.
Supposing that (3) admits s(t) as the unique solution, by linearizing (3) on a neigh-

borhood of s(t), one obtains the following initial value problem:

ε̇(t) = [F (t) + qB]ε(t) = Aq(t)ε(t), ε(0) = ε0, (4)

where ε(t) = y(t)−s(t); Aq(t) = F (t)+qB; and F (t) denotes the Jacobian of f evaluated
at s(t).

Since s(t) is the solution of (3), ε(t) = 0 for t ∈ I should be the solution of (4).
Denoting Γs as the domain of attraction of ε = 0,

Γs :=
{
ε0 ∈ <n : lim

t→∞
ε(t) = 0

}
, (5)

and considering the below dynamical system obtained by linearizing (1) with e(t) =
x(t)− s(t) and x ∈ Γs,

ė(t) = [F (t) + p(t/λ)B]e(t) = Ap(t)e(t), e(0) = e0, (6)

where Ap(t) = F (t) + p(t/λ)B, the following theorem can be established.
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Theorem 1. Assuming that Eq. (4) is uniformly exponentially stable, i.e.

∃C > 0, µ > 0 such that ε(t) ≤ C||ε0|| exp(−µt), (7)

with e0 = ε0, there exists a positive scalar λ > 0, such that limt→∞ ||e(t)−ε(t)|| = δ(λ2),
where δ(λ2) is an order function∗.

Proof: Due to the uniqueness of solution of (1), it follows that the initial value prob-
lems (4) and (6) have the unique solutions ε(t) = ΦAq

(t, 0)ε0 and e(t) = ΦAp
(t, 0)e0,

respectively, where ΦAq
(t, 0) and ΦAp

(t, 0) are the corresponding transition matrices and
ΦA(t, 0) = ΦA(t, τ)ΦA(τ, 0) for t ≥ τ ≥ 0.

Remark 1. The existence of ΦAp(t, 0) and ΦAq (t, 0) is based on the existence and unique-
ness of the solutions of (6) and (4), respectively. See Theorem 3.2 in [14].

Let’s partition the existence interval I = [0, λT ]
⋃

[λT, 2λT ] · · · , and let εk(t) be the
solution of Eq. (4) in the subinterval Ik = [kλT, (k + 1)λT ] . We will prove that

||e((k + 1)λT )− εk((k + 1)λT )|| ≤ δ(λ2) (8)

if the initial condition at t = kλT is chosen as εk(kλT ) = e(kλT ).
As explained in [15], a transition matrix can be approximated by a generalized Peano-

Baker series. Therefore,

ΦA(t, τ) = In +
∫ t

τ

A(s1)ds1 +
∞∑
i=2

[∫ t

τ

A(s1)
∫ s1

τ

A(s2)

. . .

∫ si−1

τ

A(si)dsi · · · ds2ds1
]
, (9)

where t ≥ τ ≥ 0 and In is the identity matrix of size n.
On each subinterval Ik, denoting Hk = ΦAp((k+ 1)λT, kλT )−ΦAq ((k+ 1)λT, kλT ),

one has

Hk = In +
∫ (k+1)λT

kλT

Ap(s1)ds1
∞∑
i=2

[∫ (k+1)λT

kλT

Ap(s1)
∫ s1

kλT

Ap(s2)

. . .

∫ si−1

kλT

Ap(si)dsi · · · ds2ds1
]

−

{
In +

∫ (k+1)λT

kλT

Aq(s1)ds1 +
∞∑
i=2

[∫ (k+1)λT

kλT

Aq(s1)
∫ s1

kλT

Aq(s2)

. . .

∫ si−1

kλT

Aq(si)dsi · · · ds2ds1
]}

. (10)

∗An order function δ(λ2) (see [10] p.11), implies that there exists m s.t. |δ(λ2)| ≤ mλ2 when λ is
sufficiently small.
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Using the periodic property given in (2),∫ (k+1)λT

kλT

Ap(s1)ds1 =
∫ (k+1)λT

kλT

F (s1) + p(s1/λ)Bds1

=
∫ (k+1)λT

kλT

F (s1)ds1 + λTqB

=
∫ (k+1)λT

kλT

[F (s1) + qB] ds1

=
∫ (k+1)λT

kλT

Aq(s1)ds1, (11)

and (10) becomes

Hk =
∞∑
i=2

[∫ (k+1)λT

kλT

Ap(s1)
∫ s1

kλT

Ap(s2) . . .
∫ si−1

kλT

Ap(si)dsi · · · ds2ds1

−
∫ (k+1)λT

kλT

Aq(s1)
∫ s1

kλT

Aq(s2) . . .
∫ si−1

kλT

Aq(si)dsi · · · ds2ds1

]
. (12)

Defining αk ≡ sup max (‖Ap‖, ‖Aq‖)† , the bound for Hk can be computed as follows:

‖Hk‖ =

∥∥∥∥∥
∞∑
i=2

[∫ (k+1)λT

kλT

Ap(s1)
∫ s1

kλT

Ap(s2) . . .
∫ si−1

kλT

Ap(si)dsi · · · ds2ds1

−
∫ (k+1)λT

kλT

Aq(s1)
∫ s1

kλT

Aq(s2) . . .
∫ si−1

kλT

Aq(si)dsi · · · ds2ds1

]∥∥∥∥∥
≤

∞∑
i=2

[∥∥∥∥∥
∫ (k+1)λT

kλT

Ap(s1)
∫ s1

kλT

Ap(s2) . . .
∫ si−1

kλT

Ap(si)dsi · · · ds2ds1

∥∥∥∥∥
+

∥∥∥∥∥
∫ (k+1)λT

kλT

Aq(s1)
∫ s1

kλT

Aq(s2) . . .
∫ si−1

kλT

Aq(si)dsi · · · ds2ds1

∥∥∥∥∥
]

≤ 2
∞∑
i=2

∫ (k+1)λT

kλT

αk

∫ s1

kλT

αn . . .

∫ si−1

kλT

αkdsi · · · ds2ds1

= 2
∞∑
i=2

(αkλT )i

i!
. (13)

Therefore, using (13), one has

||e((k + 1)λT )− εk((k + 1)λT )|| = ||Hk||||εk(kλT )||

≤ 2
∞∑
i=2

(αkλT )i

i!
||εk(kλT )|| ≡ δ(λ2).

†The functions Ap(t) and Aq(t) are assumed to be bounded, i.e. ||Ap(t)|| ≤ ap and ||Aq(t)|| ≤ aq ,
for some constants ap and aq , and || · || is the Euclidean norm.
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Since (4) is uniformly exponentially stable for any two solutions, ε̃(t) and ε̂(t), starting
in Γs, by Gronwall’s inequality and (7), it can be derived that

||ε̃(t)− ε̂(t)|| ≤ C||ε̃(t0)− ε̂(t0)|| exp(−µ(t− t0)) ∀t ≥ t0. (14)

If (t− t0) is large enough,

||ε̃(t)− ε̂(t)|| ≤ L||ε̃(t0)− ε̂(t0)||, (15)

where 0 < L < 1.
Next, taking into account of the inequality (15) on Ik with the initial condition at

kλT and considering λT > 1
µ lnC, the following relationship is obtained

||ε((k + 1)λT )− εk((k + 1)λT )|| ≤ L||ε(kλT )− εk(kλT )||, (16)

for k = 1, 2, · · ·.
By triangular inequality, one obtains

||e((k + 1)λT )− ε((k + 1)λT )||
≤ δ(λ2) + L||ε(kλT )− εk(kλT )||
≤ δ(λ2) + L||e(kλT )− ε(kλT )||+ L||e(kλT )− εk(kλT )||
≤ (1 + L)δ(λ2) + L||e(kλT )− ε(kλT )||. (17)

and by recursion,

||e((k + 1)λT )− ε((k + 1)λT )|| ≤ (1 + L)δ(λ2)(1 + L+ L2 + · · ·+ Lk). (18)

Taking the limit k →∞, one has

lim
t→∞

||e(t)− ε(t)|| ≤ 1 + L

1− L
δ(λ2), (19)

which completes the proof. �

Remark 2. (i) Based on Theorem 1, it is possible to choose λ small enough such that
limt→∞ ||e(t)− ε(t)|| ≤ Lλ2. Consequently, the solution x(t) in (1) will exhibit a similar
behavior as the solution y(t) of the average model (3). (ii) For practical reasons, if T is
set to be small enough, we can take λ = 1 instead of a small λ.

3. Simulation Results

In this section, some special cases are considered to further illustrate the theorem
presented in Sect. 2. In all the presented simulations, as explained in Remark 2 (ii), λ is
taken to be unity and T is in the order of 10−2.
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3.1. Chua’s Circuit
The first example is the famous Chua’s circuit [16] given as below: ẋ = p[y − g(x)]

ẏ = x− y + z
ż = −by

(20)

where g(x) = m1x+ 0.5(m0 −m1)(|x+ 1| − |x− 1|), b = 142
7 , m0 = − 1

7 , m1 = 2
7 and p

is the time varying parameter.
Figures 1 (a) and (b) depict the two periodic attractors when p equals to 9.5 and

9.69, respectively. Now, consider that p = p1(t) such that

p1(t) =
{

9.5 0 ≤ t < kT
2

9.6 kT
2 ≤ t < kT

(21)

where k = 1, 2, . . . and T = 0.01.
Thus, p1(t) is a bistable function taking 9.5 and 9.69 equally in time with period

T=0.01. The mean value of p1 computed by (2) over one period is q1 = 9.595. The phase
portrait obtained by such a switching system is given in Fig. 1 (c). For comparison, the
corresponding phase portrait of an average model with p replaced by the mean value
q1 = 9.595 is also shown in Fig. 1 (d).

Similarly, if we use another bistable function p2 with the same period while p takes
9.49 and 9.51 equally in time (the mean is q2 = 9.5), a stable periodic attractor is
observed even though these two values give chaotic attractors as shown in Fig. 2.

Based on our proof, more complex functions can be adopted and present no difference
if they possess the same mean value. Two examples are shown in Fig. 3 (b) and (d) for
which the mean values of p3 and p4 are both equal to 9.5, and it can be easily observed
that the obtained attractors in Fig. 3 (a) and (c) are well matched with that obtained in
Fig. 2 (d).

3.2. Chen System
Our next example is the Chen system [17], expressed in the form of ẋ = −ax+ py

ẏ = (c− a)x− xz + cy
ż = xy − bz

(22)

where a = 35, b = 3, c = 28, and p is the time-varying parameter.
Based on the bifurcation of (22), it is known that chaotic attractors can be obtained

as shown in Fig. 4 (a) and (b), respectively, when p equals to 56 and 58. Now let p5(t)
be a bistable function with T=0.01 taking its values between 56 and 58 equally in time,
Fig. 4 (c) depicts the phase portrait obtained by a time-varying system when p = p5(t)
in (22). The orbit is the same as that shown in Fig. 4 (d) when p is replaced by the mean
value q5 = 57.

Remark 3. (i) In practical, T will not be arbitrarily small. Therefore, a small difference
can be observed between the attractors obtained by the parameter-varying system and its
averaging model. For example, the attractors shown in Fig. 3 (b) and 4 (c) are not exactly
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identical to the attractors given in Fig. 2 (d) and 4 (d) obtained by their averaging models.

(ii) In a chaotic system, mutliple stable attractors may coexist. Therefore, the small
deviation may cause the parameter-varying system entering the Γs of another stable at-
tractor (expecially when the initial value is far away from the trajectory of the attractor,
such as x0 = 10; y0 = 9 and z0 = 12 in our example) and remain inside as shown in
Fig. 5 (a) while the average system still rests on the same orbit (same as Fig. 4 (d)).
This situation can be improved as shown in Fig. 5 (b), when T is reduced and a smaller
deviation is implied as derived in (19).

4. Conclusion

In this paper, an averaging theory is established to explain the asymptotic behaviour
of chaotic systems with a periodically changing parameter. It is proved that such a
parametric time-varying system will exhibit similar attractor of its equivalent average
model, when the frequency is high enough. The phenomenon is also demonstrated with
various typical chaotic systems and some special conditions are remarked.
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(a) (b)

(c) (d)

Figure 1: Phase portraits (x versus y) of system (20) with (a) p = 9.5; (b) p = 9.69; (c) p = p1(t); (d)
p = q1 = 9.595
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(a) (b)

(c) (d)

Figure 2: Phase portrait (x versus y) of system (20) with (a) p = 9.49; (b) p = 9.51; (c) p = p2(t); (d)
p = q2 = 9.5
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(a) (b)

(c) (d)

Figure 3: (a) p3 taking the values of 9.52, 9.48, 9.51 and 9.49 equally in time with T=0.01; (b) phase
portrait (x versus y) of system (20) with p = p3(t); (c) p4(t) = sin(200t) + sin(400t) + 9.5; (d) phase
portrait (x versus y) of (20) with p = p4(t)
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(a) (b)

(c) (d)

Figure 4: Phase portrait (x versus z) of system (22) with initial value of x0 = 1, y0 = 0.1, z0 = 0.1 and
(a) p = 56; (b) p = 58; (c) p = p5(t); (d) p = q5 = 57.
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(a) (b)

Figure 5: Phase portrait (x versus z) of system (20) with initial value of x0 = 10, y0 = 9, z0 = 12 and
p = p5(t) when (a) T = 0.01 and (b) T = 0.005.
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