
On a class of non-smooth dynamical systems:
a su¢ cient condition for smooth vs

nonsmooth solutions

Marius-F. Danca
Tehnofrig Technical College, Department of Mathematics,

165A, Maramuresului Street,
3400 Cluj-Napoca, Romania

email: Marius.Danca@aut.utcluj.ro

Abstract

In this paper we present a possible classi�cation of the elements of
a class of dynamical systems, whose underlying mathematical models
contain non-smooth components. For this purpose a su¢ cient condi-
tion is introduced. To illustrate and motivate this classi�cation, three
nontrivial and realistic examples are considered.
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1 Introduction

Non-smooth time-continuous1 dynamical systems (d.s.) appear in a large
number of problems from mechanics (dry friction with stick and slip modes,
impacts, oscillating systems with viscous damping, elasto-plasticity), electri-
cal engineering (electrical circuits and networks with switches, power elec-
tronics) theory of automatic and optimal control, games theory, walking
machines, biological and physiological systems and everywhere non-smooth
characteristics are used to represent switches. In other words, in the real
word non-smoothness is common.
The underlying mathematical models can be described by a set of �rst-
order di¤erential equations with non-smooth components. In particular, non-
smoothness is due to the discontinuity of the state variable, of the associated
vector �eld, of Jacobian (partial derivatives) or higher order discontinuity.
Despite the fact that the terms "discontinuous" or "non-smooth" could be
sometimes synonymous, however signi�cant di¤erences between underlying
behavior, numerical solutions etc. may appear. The purpose of this paper is
quite to classify precisely the models of a such class of d.s.
Our classi�cation can be useful by several reasons. As example a �non-

smooth�d.s. which is continuous can be modelled using classical numerical
methods, while if it is discontinuous special numerical methods should be
used.
The known Filippov systems [1], discontinuous with respect to the state

variable, represent a subclass of these systems.
In the practical examples the non-smoothness appears because of switch

like functions (piecewise smooth functions, see Appendix) which can be con-
tinuous or piecewise continuous (e.g. signum, absolute value, Heaviside
function-also known as the "unit step function", maximum etc.).
The behavior of non-smooth d.s. is much more complex than that of

smooth d.s. and much research e¤ort in applied science and engineering
has focussed on non-smooth d.s. Let us recall some reasons: the numeri-
cal integration of the underlying non-smooth initial value problem (i.v.p.)
is a di¢ cult task, especially for the discontinuous d.s. where only special
di¤erence methods can be used (see e.g. [2, 3]); the standard methods of
smooth d.s. theory rely heavily on linearization, while non-smooth d.s. in

1In this paper the functions are considered time-continuous, the continuity property
being considered with respect to the state variable.
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general does not have a linearization; in comparison with smooth d.s., the
non-smooth systems can have trajectories which collide with some discon-
tinuity surfaces in phase space (thus, new kind of bifurcations phenomena
could arise [4]); the i.v.p. may have not any solutions, this situation could
be, generally overdone by using the tools of di¤erential inclusions [5].
However, since the applications and experimental results appear in many

domains, the research certainly worth the e¤ort.
In this paper we focus on d.s. which can be modelled by the following

autonomous i.v.p.

:
x = f(x); x(0) = x0; x0 2 Rn; t 2 I = [0;1); (1)

under the standing assumption that f : Rn ! Rn is locally bounded. We
emphasize too that f is not required to be continuous and has the following
form

f(x) = g(x) + h(x); (2)

with g : Rn ! Rn vector function. As in the great majority of the practical
examples, we can make the following assumptions: h is a vector function
h : Rn ! Rn with the following form

h(x) =

0BBBBBB@

m1X
i=1

h1i (xi)u
1
i (x);

...
mnX
i=1

hni (xi)u
n
i (x);

1CCCCCCA ;

where the scalar components xi 7�! hji (xi) 2 R are piecewise smooth
functions with a single non-smoothness point �ji 2 R. g and the real functions
uji : Rn ! R (at least one of them being non-vanished) are smooths1, for
j = 1; 2; : : : n; i = 1; 2; :::;mj; mj being some positive integers:
Hereafter the index i and j are considered to be j = 1; 2; : : : n; i =
1; 2; :::;mj unless otherwise stated.
Function of u properties i.v.p.(1) may model a continuous, smooth,

discontinuous or non-smooth d.s.
1In practical exemples very few cases with uji continuous non-smooth were encoun-

tered. For this reason we considered mext uji smooth. However, the results remain the
same.
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Notation 1 (i) The non-smoothness null set of h will be denoted by M =
fxji =

�
x1; : : : ; xi�1; �

j
i ; xi+1; : : : ; xn

�
2 Rng; and the smoothness domain

by D = RnnM: D consists of �nite and open unidimensional domains
D� j
i � R. Their boundaries are smooth hyperplanes, �; which have the

equation xi = �ji : Thus D�j
i = fxi 2 Rj xi < �jig and D+j

i = fxi 2
Rj xi > �jig: On the boundary of D

� j
i the derivatives of hji make switch.

(ii) Let denote by H the class of all functions hji piecewise smooth and
possibly continuous on R.

Remark 2 (i) Hereafter, in this paper, by non-smooth function one under-
stand a continuous/discontinuous piecewise smooth function.
(ii) d.s. modeled by i.v.p.(1) shall be considered smooth only if its right-hand
side f is smooth. The only presence of the hji functions does not represents
a su¢ cient condition for f non-smoothness or even discontinuity: For this
reason, the term "non-smooth" d.s. used without some additional assump-
tions in these cases may be improper.

For uji = const and hji (xi) = sgn(xi) we get the particular case of the
Filippov systems [1]. A particular class of d.s. modeled by i.v.p.(1) was
treated in [6].
The structure of this paper is the following: Section 2 introduces the main

property concerning the continuity and smoothness of the right-hand side of
i.v.p.(1), while Section 3 introduces the classi�cation of the d.s. modeled by
(1) beside practical examples, using the result in Section 1.

2 Continuity and smoothness of the right-
hand side f

Function of uji properties we have the following main result concerning the
right-hand side f of i.v.p.(1)

Proposition 3 Suppose f de�ned by ( 2) with uji and g smooth and
hji 2 H
(i) If at least one of the following assumptions is true:
i1) hji are continuous;
i2) uji veri�es the following condition

uji (x
j
i ) = 0; (*)
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then f is continuous on Rn;
(ii) If uji veri�es (*) and moreover

@ uji
@ xi

(xji ) = 0; (**)

then f is smooth on Rn:

Proof. (i) The proof for the case hji continuous is obvious.
Let us consider (*) veri�ed. The continuity of f on D follows from the
continuity of g; uji and (piecewise) continuity of h

j
i :

Taking account that the state variable component xi belongs either to some
D+ j
i or D� j

i ; on xji 2M each component hjiu
j
i veri�es

lim
x!x

j
i

x2D

hji (xi)u
j
i (x) = lim

xi!�
j
i

xi2D
� j
i

hji (xi) lim
x!x

j
i

x2D

uji (x) = 0,

due to the boundness of hji on D
� j
i and because from (*) we have, following

the uji continuity on Rn

lim
x!x

j
i

x2D

uji (x) = u
j
i (x

j
i ) = 0:

Consequently f is continuous in xji since, using the continuity of g in
these points and (*), one obtains

lim
x!x

j
i

x2D

f j(x) = lim
x!x

j
i

x2D

gj(x) = gj(xji ) = f(x
j
i );

which proves that f is continuity on Rn:
(ii) On D, f is smooth due to the smoothness of g, uji and the piecewise

smoothness of hji .
On D the partial derivatives of h are

@ hj

@ xk
(x) =

mjX
i=1

"
d hji (xi)

d xk
uji (x) + h

j
i (xi)

@ uji
@ xk

(x)

#
; k = 1; :::; n:

On xji 2M; (*) and (**) yield

lim
x!x

j
i

x2D

@ hj

@ xk
(x) = 0; k = 1; :::; n;
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and the partial derivatives of f veri�es

lim
x!x

j
i

x2D

@ f j

@ xk
(x) = lim

x!x
j
i

x2D

@ gj

@ xk
(x) =

@ gj

@ xk
(xji ) =

@ f j

@ xk
(xji ):

Thus, the partial derivatives of f exist and are continuous in xji : Therefore
f is smooth on xji and on Rn: This ends the proof.

Remark 4 Conditions (*) and (**) are very restrictive, therefore only few
particular cases of i.v.p.(1) with functions verifying (*) or/and (**) were
encountered. The most used example of such functions are the polynomials
which can be decomposed as follows u(x) = (xi � �i)m u(x); x 2 Rn; where
u is a real polynomial, with m = 1 for (*), and m � 2 for (**). Also
trigonometric functions can be found in practical examples.

For the case u(x) = const in [7] a generalized derivative for f was
introduced.
If hji are discontinuous, special precaution should be taken, since in �ji

i.v.p.(1) may have not sense. Therefore a common device to obtain a precise
mathematical setup is to replace these functions hji by their multivalued
version which can be handled via di¤erential inclusions theory (see e.g. [1]
or [5]). For instance, for sgn function, its multivalued form is

Sgn(x) =

8<:
f�1g; x < 0;
[�1; 1] ; x = 0;
f+1g; x > 0;

and the discontinuous i.v.p.
:
x = sgn(x); x(0) = x0; transforms into the

set-valued i.v.p.(di¤erential inclusion)
:
x 2 Sgn(x); x(0) = x0 which, due

to the regularity of the set-valued function Sgn, has several generalized
(Filippov) solutions (see e.g. [6]). This is one of the major di¤erences be-
tween discontinuous i.v.p., where the solutions as we have seen imply special
approach, and continuous non-smooth i.v.p. where, due the continuity, the
existence is assured (Péano�s theorem).

3 Dynamical systems modeled by i.v.p.(1)

We consider next the d.s. modeled by (1) as being continuous, discontinuous,
smooth or non-smooth if the right-hand side enjoy the mentioned properties.
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Using Proposition 3 we can formulate the main result which allows to classify
d.s. modeled by i.v.p.(1), function of his right-hand side properties.

Theorem 5 Let i.v.p.(1) with u; g smooth and hji 2 H
1. If u veri�es (*) then the i.v.p. de�nes a continuous non-smooth d.s.
2. If u veri�es (*) and (**); then the i.v.p. de�nes a smooth d.s.

All the possible cases treated by the above theorem are schematically
depicted in Fig. 1.

Remark 6 In practical examples there are i.v.p.(1) with non-smooth func-
tions u (see Example 8), which can be classi�ed too by the above algorithm.

Next let us consider the following examples from electrical circuits, me-
chanics with dry friction and biology, without initial conditions. The chaotic
behaviors of these systems are not studied here, the details on their dynamics
could be found in the mentioned references. The phase portraits and time
series were plotted using a program code which implemented a special nu-
merical method for di¤erential inclusions, corresponding to the underlying
discontinuous d.s.

Example 7 Models of some electrical circuits can be accurately implemented
with resistors, capacitors, diodes and ampli�ers. The following example is a
modi�ed mathematical variant of the known Chen system [8] 2

:
x1 = a(x2 � x1);
:
x2 = cx2 + (c� a� x3) xp1sgn(x1);:
x3 = �bx3 + x1xp2 sgn(x2); a; b; c 2 R+;

(3)

where we considered the cases p 2 f0; 1; 2g: Here

g(x) =

0@ a(x2 � x1)
cx2
�bx3

1A ;
h(x) =

0@ 0
(c� a� x3)xp1sgn(x1)

x1x
p
2 sgn(x2)

1A :
2The circuitry is practically realizable (see e.g. [9] where details on the electrical circuit

implementations are presented).
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The functions uji are variables

u21(x) = (c� a� x3)x
p
1; u

3
2(x) = x1x

p
2; u

j
i (x) = 0; for i 6= 1; 2 and i 6= 2; 3;

h21 = sgn(x1); h32 = sgn(x2):

(a) For p = 0 and a 6= c one obtains the discontinuous, piecewise linear
form of another variant of the Chen�s system studied in [10]. The dynamics
for a = 1:18; b = 0:168; c = 7 and q = 0:1 is chaotic (Fig.2). For
a = c = 1; b = 0:16; and q = 0:9; the d.s. is continuous non-smooth
(Fig.3).
(b) For p = 1 and a = c, the condition (*) is ful�lled. Therefore the right-
hand side is continuous, non-smooth, the considered d.s. being a continuous
non-smooth one, while for a 6= c is a discontinuous one.
(c) For p = 2 and a = c the right-hand side is smooth since uji verify both
(*) and (**). In this case the system is smooth. For a 6= c the right-hand
side is discontinuous and the underlying d.s. is discontinuous. No chaotic
behavior was found for p = 1 and p = 2; except regular motions (Fig.4).

Example 8 The next example is a nonautonomous friction oscillator peri-
odically excited by a forcing and is governed by the following equation ([11,
pp 225])

::
x+ x+ a [�(1) + �(

:
x� 1)sgn( :x� 1)] = 
 cos(!t);

with the friction characteristic �(y)

�(y) =
�0 � �1
1 + �0 jyj

+ �1 + �1 jyj
2 ;

where a = 10; �0 = 0:4; �1 = 01; �0 = 1:42; �1 = 0:01; 
 = 0:7 and the
control parameter ! 2 [1; 1:15] : The standard autonomous form is

:
x1 = x2;
:
x2 = �x1 � a [�(1) + �(

:
x� 1)sgn( :x� 1)] + 
 cos(x3);

:
x3 = !;

(4)

with

g(x) =

0@ x2
�x1 � a�(1)

!

1A ; h(x) =
0@ 0
a�(x2 � 1)sgn(x2 � 1)

0

1A :
8



Here u21(x) = �(x2�1) and u
j
i (x) = 0 for j 6= 2 ; i 6= 1: h21(x1) = sgn(x2�

1) is discontinuous of H class, while u is continuous on R, piecewise smooth
and does not veri�es neither (*) nor (**) in x21 = (x1; �

2
1; x3) = (x1; 1; !)

(it is easy to see that �(y) > 0 8y 2 R; see Fig.5 and Remark 6 ). There-
fore the right-hand side of (4) is non-smooth and the d.s. is discontinuous.
The "grazing" phenomenon (tangential contact between trajectory and the
discontinuity surface [11]) for the dry friction can be seen in the Fig.6 where
a chaotic trajectory is depicted.
Several examples of dry friction problems can be found in [11].

Example 9 The last considered example is a simple one taken from biol-
ogy [12] describing the distribution of predators among two di¤erent habitat
patches

:
x1 = ax1 � v1x1x3;
:
x2 = x2 � v2x2x3;
:
x3 = v1x1x3 + v2x2x3 � x3; a > 0;

(5)

where the control v(t) = v (v1(t); v2(t)) is a measurable function. In behav-
ioral ecology it is often assumed that each individual behaves optimally, i.e.
the control v = (v1; v2) has to follow the optimallity constraint (see [12] for
details)

v 2

8<:
(1; 0) if x1 > x2;
(0; 1) if x1 < x2;
f(v1; v2) jv1 + v1 = 1; vi � 0g if x1 = x2:

Thus, the discontinuous i.v.p.(5) transformed into a di¤erential inclusion, or
multivalued problem. A chaotic behavior is presented in Fig.7.

4 Conclusion

In this paper the classi�cation of d.s. modeled by i.v.p.(1) was achieved
using the properties of the right-hand side function f . Signi�cant practical
examples were analyzed and classi�ed via the proposed scheme.
Using this algorithm, we proved that despite the presence of non-smooth

components in the underlying i.v.p. the d.s. may be continuous or even
smooth.
Classes of d.s. as piecewise linear, discontinuous of Filippov like type, are

included, following the presented scheme, into the general class of d.s. (1).
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The most encountered practical examples of systems modeled by i.v.p.(1)
are, as expected, discontinuous.
It would be interesting to see if requirements on initial conditions could

assure ful�llment of the requirement of the behavior of the solution on M:
A study on the di¤erences between the dynamics of these subclasses of

systems modeled by i.v.p.(1) remains a task for a future work.

Appendix

De�nition 10 A smooth function is a function that has continuous deriva-
tives up to some desired order over some domain (i.e. a function of Cm;m �
1 class).

De�nition 11 A piecewise function is a function that is de�ned on a se-
quence of intervals.

A common example is the absolute value j �j :

De�nition 12 A function is piecewise continuous if it�s domain can be par-
titioned into a sequence of �nite number of intervals such that it is continuous-
over each such interval, and there is a �nite distance between each pair of
break points.

The sign is a classical example of piecewise continuous function.

De�nition 13 A function f is piecewise smooth on an interval if both f
and his partial derivatives of m � 1 order, are piecewise continuous on the
interval

The de�nitions of piecewise continuous, piecewise di¤erentiable and so on
are therefore made, to require that the �pieces�of the function are continu-
ous (respectively di¤erentiable), but that at the end points failure of those
conditions is allowed.
An one-dimensional example is the piecewise smooth sawtooth function f (x) =
x; x 2 [��; �], extended periodically on the real line; this function is dis-
continuous at x = (2n+ 1)� for all integer values of n.
Also the sign function is a piecewise smooth discontinuous function, while
the absolute value function is piecewise smooth continuous.

10



Remark 14 A piecewise smooth functions in I, is not necessary continuous
at every point in I, but is only allowed to have a �nite number of jump
discontinuity.
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Figure 1: Classi�cation of the dynamical systems modeled by (1).
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Figure 2: A chaotic trajectory of the discontinuous d.s. (3) with p = 0:
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Figure 3: Attractive �xed point of (3) for a = c:
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Figure 4: A stable limit cycle of the d.s. (3).
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Figure 5: The graph of the function u21 from the model (4).
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Figure 6: Grazing phenomen for the d.s. (4).
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Figure 7: A chaotic trajectory of the d.s. (5).
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