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Abstract

In this paper we present a new variant of Chen’s system — a piecewise linear Chen system
of fractional-order. The discontinuous system is transformed via Filippov’s regularization and
using Celinna’s Theorem, into a continuous system. By numerical simulations, we reveal
chaotic behavior and also the existence of small parameter windows where, for some fixed
bifurcation parameter and depending on initial conditions, coexistence of stable attractors
and chaotic attractors is possible. Using an algorithm to switch the bifurcation parameter,
every stable attractor can be numerically approximated.

Keywords: PWL Chen attractor of fractional-order; parameter switching; Cellina’s Theorem,
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1 Introduction

There are several paradigmatic three dimensional chaotic flows. Aside from the ubiquitous Lorenz
and Rössler systems, one of the most intricate and widely studied is the system of Chen proposed
in 1999 [?]. Each of these systems represent a topological distinct genus of chaos. In 2002 Aziz-
Alaoui and Chen [?] presented a Piecewise Linear (PWL) Chen system modeled by the following
Initial Value problem (IVP)

ẋ1 = a (x2 − x1) ,
ẋ2 = (c− a− x3) sgn(x1) + cdx2, x(0) = x0, t ∈ [0, T ],
ẋ3 = x1sgn(x2)− bx3,

(1)
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with x0 ∈ R3, T > 0, a, b, c, d some positive real parameters verifying the condition a < c. Whereas
the origin Chen system [?] is described by

ẋ1 = a (x2 − x1) ,
ẋ2 = (c− a)x1 − x1x3 + cx2, x(0) = x0 t ∈ [0, T ],
ẋ3 = x1x2 − bx3,

(2)

(with a = 35, b = 3, and c = 28) this new system (??), is a piecewise continuous variant. A
detailed asymptotic analysis of this new system, including a study of the chaotic behavior with the
bifurcation parameter, is presented in [?].

In this paper we present a new and more general extension of the PWL system (??): the PWL
Chen’s system of fractional-order. Define the fractional differential system

Dq1
∗ x1 = a (x2 − x1) ,

Dq2
∗ x2 = (c− a− x3) sgn(x1) + cdx2, x(0) = x0, t ∈ [0, T ],

Dq3
∗ x3 = x1sgn(x2)− bx3,

(3)

whereDq
∗ (for q = (q1, q2, q3)) stands for Caputo’s differential operator of order q with starting point

0 [?, ?, ?]. Recall that the Caputo differential operator is a fractional extension of differentiation
defined for q ∈ R by

Dq
∗f(t) =

1

Γ(n− q)

∫ t

0

f (n)(τ)

(t− τ)q+1−n
dτ.

This definition employs a generalization of an integer order derivative n, Cauchy’s identity express-
ing n-repeated integration with a single integral, and Euler’s Γ function. In contrast to alternative
definitions of fractional differentiation, Caputo’s derivative gives a physical interpretation to the
included initial conditions necessary in practical problems [?, ?]. Using this definition, we avoid
the expression of initial conditions with fractional derivatives and the initial condition in (??) can
be considered in the standard form x(0) = x0. In most practical examples, one takes qi ≤ 1,
i = 1, 2, 3.

With these definitions in place it is straightforward to check that for q = (1, 1, 1), the system
(??) reduces to the ordinary integer-order PWL Chen system (??). In the remainder of this paper
we explore this system — both for the integer order derivatives and for fractional-order extensions.

Let us denote by p the single scalar bifurcation parameter, which for the considered system (??)
can be any of the four parameters a, b, c or d. Two representative cases have been considered here:
p := d integer case q = (1, 1, 1), and p := a integer case q = (1, 1, 1), and the fractional-order case
q = (0.99, 0.98, 0.97). For the sake of conciseness we do not present results of computation here,
but we have found that the other two cases (p := b and p := c) demonstrate similar behaviour.
Aided by extensive numerical computations and computer simulations, we studied the bifurcation
behaviour of each of these parameters sets. We find a particularly rich bifurcation behaviour, as
demonstrated by the exemplar Bifurcation Diagrams (BD) in Fig. ??. The results are for: (a)
p := d during the integer-order case, with a = 1.15; (b) p := a in the integer order case; and (c)
for p := a with the fractional-order case. In each case we set b = 0.15 and c = 2.

It is easy to verify that, in addition to the origin, the system has four equilibrium points

X∗
(
± ab−bc

bcd±1 ,±
ab−bc
bcd±1 ,±

a−c
bcd±1

)
. The sign of the first two coordinates can be found in Table ??. The

coordinates present symmetries which are also evident in the simulations of the state variables x1
and x2. These symmetries come from the invariance of the vector field under transform (x, y, z)→
(−x,−y, z). To note that for the chosen values for parameters a, b, c and d, with a < c, the state
coordinate x∗3 is positive while x∗1,2 can be either positive and negative.

sgn(x1) sgn(x2) X∗(x∗1, x
∗
2, x

∗
3)

− − X∗
1

(
− ba−bc

bcd−1 ,−
ba−bc
bcd−1 ,

a−c
bcd−1

)
+ − X∗

2

(
ba−bc
bcd+1 ,

ba−bc
bcd+1 ,−

a−c
bcd+1

)
− + X∗

3

(
− ba−bc

bcd+1 ,−
ba−bc
bcd+1 ,−

a−c
bcd+1

)
+ + X∗

4

(
ba−bc
bcd−1 ,

ba−bc
bcd−1 ,

a−c
bcd−1

)
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Table 1: Equilibrium points of PWL Chen’s system.

As can be seen from the detail in Figure ?? (a) and (b), for p := d and p := a respectively, a new
characteristic has been uncovered for this system. We see evidence for the coexistence of stable
and chaotic motions in some parameter windows (details D1 in Figure ?? (a) and D2 in Figure ??
(b) ). Therefore, for a specific value p in these windows, depending on the basin of attraction and
initial conditions, we can find coexisting attractors. For example, for a = 1.15, b = 0.15, c = 0.1,
and with p := d = 0.361 chosen in the window [0.345, 0.370], we found two different attractors: a
chaotic one and a stable cycle (see D1 in Figure ?? (a)). For b = 0.15, c = 2, d := 0.1 and with
p := a chosen in the window p ∈ [0.7, 0.8], the two attractors are plotted in the detail D2 in Figure
?? (b).

In the remainder of this paper we show numerically, aided by computer simulations, that
every stable attractor of Chen’s system (??) can be numerically approximated by a Parameter
Switching (PS) algorithm [?]. The PS algorithm switches p within a chosen set, while the IVP is
numerically integrated with some numerical scheme with fixed step size. The convergence criteria
for the PS algorithm to some desired attractor is presented in [?, ?]. In what follows, the numerical
integrations have been realized with the standard Runge-Kutta (RK4) method for the integer-order
case and Adams-Bashforth-Moulton (ABM) method [?] for the fractional-order case (see also [?]).

The paper is structured as follows: in Section ?? the PS algorithm is explained, Section ??
presents the continuous approximation of the IVP (??) and in Section ?? several stable attractors
of PWL Chen’s system of fractional-order are approximated with the PS algorithm.

2 Parameter switching algorithm

Let a continuous system of fractional-order be modeled by the following IVP

Dq
∗x = f(x) + pAx, t ∈ I = [0, T ], x(0) = x0, (4)

where: A ∈ Rn×n is a real square constant matrix; f : Rn → Rn is a nonlinear, at least continuous,
function and, q ≤ 1. The great majority of known systems of integer or fractional-order, including
the usual Lorenz, Chen, Rössler, Chua, Rikitake (and many others), are modeled by this IVP.
In [?, ?] it was proved analytically and verified numerically that the PS algorithm allows for the
numerical approximation of any desired attractor by switching the control parameter within a
chosen finite set of values while the underlying IVP is numerically integrated with some fixed step
size numerical method.

Next, assume that the IVP enjoys the uniqueness (Lipschitz continuity is a common suffi-
cient conditions for both integer and fractional case (see [?] Corollary 6.9 for FDE uniqueness)).
Furthermore, denote by PN = {p1, p2, ..., pN} ⊂ R, N ≥ 2, the switching values set.

Remark 1. Due to this uniqueness assumption, it is reasonable to consider that for each pi ∈ PN ,
i ∈ {1, 2, ..., n} there is a corresponding unique attractor Api . We follow this assumption in this
paper — as is usual for numerical tests — and refer to this as the trajectory of the underlying
numerical solution, after sufficiently long transients are removed.

By choosing PN , while the underlying IVP is numerically integrated with a fixed step-size h (in
this paper, we use a fourth order Runge-Kutta integrator for the integer case and the ABM method
for the fractional case), PS switches in some deterministic (periodic) way the control parameter
within PN , for relative short time subintervals. The obtained “switched solution” will approximate
the “averaged solution” obtained for p replaced with the average of switched values. Following the
Remark ??, the attractor corresponding to the switched solution, will approximate as closely as
desired (depending on the numerical integration accuracy limitation), the attractor corresponding
to the averaged solution.

Schematically, for a chosen set PN with the “weights” set M = {m1,m2, ...,mN}, and a fixed
step-size h, the way in which PS algorithm works can be expressed schematically as follows

[m1p1,m2p2, ...,mNpN ], (5)
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means that for the first m1 integration steps the control parameter p will take the value p1, then,
for the next m2 integration steps, p = p2, and so on until, for mN times, p = pN , after which, again
p = p1 for m1 times, then p = p2 for m2 times and so on until the considered time integration
interval, [0, T ], is covered. For example [2p1, p2] means that while the IVP is integrated, p will take
the values as follows: p = p1, p = p1, p = p2, p = p1, p = p1, p = p2, and so on.

Let us denote the “weighted average” of the values of PN by

p∗ :=

∑N
i=1 pimi∑N
i=1mi

. (6)

Then, the “switched attractor”, A∗, obtained with the PS algorithm, will approximate the “av-
eraged attractor”, Ap∗ , obtained by integration of the underlying IVP with p replaced with p∗.
The analytical proof of the convergence, for the integer-order case, is presented in [?, ?], while for
fractional-order systems the convergence has been computationally verified for several systems (see
e.g. [?]).

This PS algorithm can be used both as a control and an anticontrol-like techniques, when, by
some objective reasons, some certain targeted parameter value p∗ cannot be accessed directly. In
this case, we have to select PN , mi, i = 1, 2, ..., N and an adequate scheme (??) to obtain, with
(??), the targeted value p∗.

The PS algorithm can help enrich our understanding of what happens in some real systems
when the control parameter is switched by natural or imposed causes. However, while most known
control/anticontrol algorithms “force” the trajectory to change its characteristics and behavior,
the PS algorithm allows to obtain any desired existing attractor.

Finally, the PS algorithm proves that p switchings present a robustness-like property in the
following sense: for whatever sets PN ,M, if pmin = min{PN} and pmax = max{PN}, the obtained
values p∗ remains between pmin and pmax. Note that the PS algorithm applies also for discrete-
time real systems [?] and some interesting results have been obtained for complex discrete-time
systems [?] — although that is beyond what we consider here.

3 Continuous approximation of PWL Chen system

The IVP (??) is PWL. The main obstacle in applying the PS algorithm to PWL systems is the lack
of numerical methods specifically devised for fractional differential equations (FDE) with discon-
tinuous right-hand side (Filippov-like systems of fractional-order). This is one of the reasons that
discontinuous systems of fractional-order have been not rigorously studied. One possible approach
to surpass the obstacle of integration of discontinuous FDE, is to approximate continuously the
underlying discontinuous initial value problem, according to the algorithm based on the transfor-
mation of the IVP into a set-valued one, which next can be continuously approximated with a
single-value IVP [?]. Thus, piecewise constant components, like sgn, can be continuously approx-
imated globally (on small neighborhoods of the graph) or locally (in small neighborhood centered
in the discontinuity point x = 0). In this paper we use the global sigmoid approximation s̃gn

s̃gn(x) =
2

1 + e−
x
δ
− 1, (7)

which approximates globally the sgn function, on small neighborhoods of its graph (see Fig. ??
(a) where, for clarity, δ has be chosen larger (δ = 1e − 1), while in Fig. ?? (b), sgn is drawn as
a function of two variables x and δ). The parameter δ controls the slope of the sigmoid function,
near the discontinuity x = 0. As proved in [?], an adequate choice for numerical purposes is δ in
δ = 1e− 5.

After approximation, In Chen’s system (??), becomes

Dq1
∗ x1 = a (x2 − x1) ,

Dq2
∗ x2 = (c− a− x3) s̃gn(x1) + cdx2,

Dq3
∗ x3 = x1s̃gn(x2)− bx3.

(8)

The cases studied in this paper are presented in Table ??
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p := d p := a
.
x1 = a(x2 − x1),
.
x2 = (c− a− x3)s̃gn(x1) + cpx2,
.
x3 = x1s̃gn(x2)− bx3,

Dq1
∗ x1 = p(x2 − x1),

Dq2
∗ x2 = (c− p− x3)s̃gn(x1) + cdx2,

Dq3
∗ x3 = x1s̃gn(x2)− bx3,

.
x = f(x) + pAx Dq

∗x = f(x) + p(Ax+ g(x)), q ≤ 1

f(x) =

 (x2 − x1)
(c− a− x3)s̃gn(x1)
x1s̃gn(x2)− bx3



A =

 0 0 0
0 c 0
0 0 0


f(x) =

 0
cs̃gn(x1)− x3s̃gn(x1) + cdx2

x1s̃gn(x2)− bx3



A =

 −1 1 0
0 0 0
0 0 0



g(x) =

 0
−s̃gn(x1)

0



Table 2: PWL Chen systems utilized in this paper.

Even for p := a (Table ?? second column), when the system does not belong to the class of
systems modeled by the IVP (??), the PS algorithm applies to this more general class of systems:

Dq
∗x = f(x) + p(Ax+ g(x)), t ∈ I = [0, T ], x(0) = x0, (9)

with g(x) = (0,−s̃gn, 0)T .

4 Numerical results

In this section we apply the PS algorithm to approximate stable cycles of Chen’s PWL system
of fractional-order (??) for p := d the integer-order case, and p := a integer and fractional-order
cases. The case p := a is an example of a new class of systems of integer and fractional-order where
the PS algorithm still applies. For this purpose, we consider the continuously approximated Chen
PWL system of fractional-order (??) and chose the sets P and M which generate the targeted
values p∗, after which the PS algorithm applies via the scheme (??). The targeted values for p∗

are chosen in the stable windows of bifurcation diagrams in Figure ??. We employ an integration
step-size of h = 0.001 − 0.005. For all phase plots, transients have been omitted. To underline
numerically and computationally the match between the two attractors (A∗ and Ap∗), overplotted
phase plots, time series, histograms and Poincaré sections have been made. Also, the Hasudorff
dimension, dH [?] p. 114, is for all considered cases, of order of 1e − 3, which indicates a good
match between the two trajectories.

• p := d,

Commensurate case q = (1, 1, 1)

With a = 1.15, c = 2 and b = 0.15, the system behaves chaotically (see bifurcation diagram
in Fig. ?? (a)). Let us choose P2 = {0.32, 0.48} (Fig. ?? (a)) and M = {1, 1} with the
underlying scheme, [1p1, 1p2]. The switched attractor A∗ approximates the averaged attractor
Ap∗ with p∗ given by (??): p∗ = 0.4. The match between both attractors can be seen in
the overplotted phase plots in Fig. ?? (b) and overplotted time series in Fig. ?? (e)-(g).
We have a control-like scheme, since the approximated attractor Ap∗ , is a stable cycle. The
underlying attractors are a chaotic one A0.32, and a stable one, A0.48 (Fig. ?? (c), (d)).
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• p := a

Since the case p := d represents the case of the class of systems modeled by (??), where the PS
algorithm has been extensively studied in previous works, we consider next the case p := a,
which belongs to the class of systems modeled by (??), and where the PS algorithm has been
not applied yet. For b = 0.15, c = 2 and d = 0.1, as can be seen from the bifurcation diagram
(Fig. ?? (b)), system dynamics are more complex than for p := d, presenting several direct
and reverse logistic map bifurcations. In this case, due to the term ps̃gn(x1), the system is
modeled by (??). However we will show that the PS algorithm still applies for this more
general case.

Commensurate case q = (1, 1, 1)

Choosing P2 = {0.9, 1}, (Fig. ?? (a)), with M = {1, 1}, the relation (??) gives p∗ = 0.95,
and with the scheme [1p1, 1p2] the PS algorithm generates the switched attractor A∗ which
approximates the stable cycle Ap∗ . The correspondence can be seen in the phase plots (Fig.
?? (b)) and time series (Fig. ?? (e)-(g)). This time the utilized attractors are chaotic: A1.9

and A0.9 (Fig. ?? (c), (d)).

The non-uniqueness of solutions for p∗ in the relation (??), allows different ways to obtain
some desired attractor Ap∗ . For example, the same attractor A0.95 obtained above with the
scheme [1p1, 1p2] (with p1 = 0.9 and p2 = 1, values situated in closed neighborhoods of p∗),
can be approximated by a switched attractor A∗ obtained with p values situated relatively
distant from p∗. Thus, A0.95 can be approximated with PN = {0.67, 1.51} (Fig. ?? (a))
and weights M = {2, 1}, i.e. the scheme [2p1, 1p2]. Phase plots (Fig. ?? (b)) and time
series (Fig. ?? (e)-(g)) reveal the approximation. This time, the stable cycle A∗ is obtained
starting from parameter values which generate stable cycles (Fig. ?? (c), (d)).

Also due to this same non-uniqueness, a set value p∗ can be obtained with N > 2 elements.
For example p∗ = 0.95 can be obtained with P6 = {0.6, 0.7, 0.8, 1.09, 1.32, 1.4} (Fig. ??
(a)) and M = {1, 2, 2, 3, 1, 1}. By applying the PS algorithm with the underlying scheme
[1p1, 2p2, 2p3, 3p4, 1p5, 1p6], one obtains again a good match between the two attractors A∗

and Ap∗ (Fig. ??).

Incommensurate case q = (0.99, 0.98, 0.97)

With P4 = {0.75, 1.29, 1.52, 1.6, 1.38} andM = {1, 1, 2, 2}, the PS scheme [1p1, 1p2, 2p3, 2p4]
generates the attractor A∗, which approximates Ap∗ with p∗ = 1.38. The match between the
two attractors are revealed in Fig. ??.

Conclusion

In this paper we introduced a new variant of Chen’s system: the PWL Chen’s system of fractional-
order, revealing interesting new dynamical characteristics — including the coexistence of chaotic
and ordered motions. To numerical cope with this system, we first must make a continuously
approximation by using an algorithm based on Filippov’s regularization and also by applying
Cellina’s Theorem.

We show that the stable attractors can be numerically approximated by starting from a set
of parameter values which are periodically switched while the underlying IVP is numerically inte-
grated.

Results are robust across a range of moderate small step sizes.
Finally, we note that the inclusion of the case p := a, allowed us to verify that the PS algorithm

applies also to a new general class of systems modeled by (??).
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Figure 1: Bifurcation diagrams of Chen’s system (??); (a) p := d, q = (1, 1, 1) and a = 1.15,
c = 2 and b = 0.15; (b) p := a, q = (1, 1, 1) and b = 0.15, c = 2 and d = 0.1; (c) p = a,
q = (0.99, 0.98, 0.97) and b = 0.15, c = 2 and d = 0.1.
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Figure 2: (a) Graph of the sigmoid function s̃gn for δ = 1e− 1; (b) Graph of the sigmoid function
depending on δ.
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Figure 3: PWL Chen’s attractor A0.4, for p := d, and q = (1, 1, 1), approximated with PS algorithm
with schme [1p1, 1p2] with p1 = 0.32 and p2 = 0.48; (a) Bifurcation diagrams with P2 utilized in PS
algorithm; (b) Overplotted attractors A∗ (red) and Ap∗ (blue); (c) Attractor A0.32; (d) Attractor
A0.48; (e)-(g) Overplotted time series corresponding to A∗ (red) and Ap∗ (blue).
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Figure 4: PWL Chen’s attractor A0.95, for p := a, q = (1, 1, 1), approximated with PS algorithm
with scheme [1p1, 1p2] with p1 = 0.9 and p2 = 1; (a) Bifurcation diagram with P2 utilized in PS
algorithm; (b) Overplotted attractors A∗ (red) and Ap∗ (blue); (c) Attractor A0.9; (d) Attractor
A1; (e)-(g) Overplotted time series corresponding to A∗ (red) and Ap∗ (blue).
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Figure 5: PWL Chen’s attractor A0.95, for p := a, q = (1, 1, 1), approximated with PS algorithm
with scehme [2p1, 1p2] with p1 = 0.67 and p2 = 1.51; (a) Bifurcation diagram with P2 utilized in PS
algorithm; (b) Overplotted attractors A∗ (red) and Ap∗ (blue); (c) Attractor A0.67; d) Attractor
A1.51; (e)-(g) Overplotted time series corresponding to A∗ (red) and Ap∗ (blue).
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Figure 6: PWL Chen’s attractor A0.95, for p := a, q = (1, 1, 1), approximated with PS algorithm
with scheme [1p1, 2p2, 2p3, 3p4, 1p5, 1p6] with P6 = {0.6, 0.7, 0.8, 1.09, 1.32, 1.4}; (a) Bifurcation
diagram with P2 utilized in PS algorithm; (b) Overplotted attractors A∗ (red) and Ap∗ (blue); (c)-
(h) Attractors A0.6, A0.7, A0.8, A1.09, A1.32 and A1.4; i-k) Overplotted time series corresponding
to A∗ (red) and Ap∗ (blue). M = {1, 2, 2, 3, 1, 1}.
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Figure 7: PWL Chen’s attractor A1.38, for p := a, q = (0.99, 0.98, 0.97), approximated with PS
algorithm with scheme [1p1, 1p2, 2p3, 2p4] with P4 = {0.75, 1.29, 1.52, 1.6}; (a) Bifurcation diagram
with P2 utilized in PS algorithm; (b) Overplotted attractors A∗ (red) and Ap∗ (blue); (c)-(g)
Attractors A0.75, A1.29, A1.52, A1.6 and A1.38; (h)-(j) Overplotted time series corresponding to A∗

(red) and Ap∗ (blue).
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