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Abstract. The objective of this paper is to prove the convergence of a linear implicit multi-
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1 Introduction

We present a linear implicit m-step method LIL (Local Iterative Lin-
earization) and prove its convergence applied for the following initial value
problem

.
x = f (t, x), x(t0) = x0, (1.1)

where f : [t0, T ] × Rn → Rn, T > 0, t0 ∈ R+, is a C m smooth Lipschitz
function1.

Although the classical linear multi-step algorithms are very known and
utilized, the LIL characteristics (convergence properties, time stability and
applications results) show that this numerical method could be considered as
an interesting alternative to the widely used formulas.

The backward approximation of derivatives implies null coefficients of the
odd order derivatives which represent a major advantage for the propagation
of errors.

As a comparative test two simple ODEs with known analytical solutions
and a chaotic continuous-time dynamical system, first studied by Fabrikant
and Rabinovich [6] and recent numerically re-examined by Danca and Chen
[3], was integrated using the LIL algorithm and some of the most known
algorithms. The complex dynamic of this special model represented a real
challenge for almost all of these methods as shown in Sect.5.

1The Lipschitz condition is necessary for the stability proof.
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Being an implicit method, an extrapolation is used as the predictor phase.
Like all the m-step algorithms, the previous m points (beside the �rst m
start points) should be estimated every step.
To study the convergence we use the uni�ed approach of stability and

consistency developed by Germund Dahlquist in 1956 [2] (see also [7-8]).
Thus, the LIL method applied to the initial value problem (1.1) is considered
convergent if and only if it is stable and consistent.
The content of this paper is as follows: In Sect.2 the LIL method is

deduced. The convergence is proved in Sect.3. In Sect.4 is presented the
time stability with the corresponding time stability domains. In Sect.5 three
examples are presented. All computer tests were realized using a Turbo
Pascal code written by the author. In the Appendix, the coe¢ cients of LIL
method are presented.

2 Deduction of the LIL method

Let us consider the uniform grid

� = (t0 < t1 < ::: < tn = T ); n 2 N�;

with the step-size

h =
T � t0
n

= 2 �t ;

where �t stands for the ray of the neighborhood Vk = (tk � �t ; tk + �t) ;
k = 1; 2; :::; n� 1:
We assume that all in�nite Taylor series converge, but this is not necessarily
since one truncate at a su¢ ciently large but �nite number of terms.
One introduce the following notations

xk�j : = x(tk�j) = x [t0 + (k � j)h)] ;
x
(i)
k : = x(i)(tk); x

(0)
k := x(tk); j = 1; 2; :::;m:

In the following k is supposed to take the values k = 1; 2; :::; n� 1:
If we consider xk�j as a function of variable h de�ned in Vk , then the
�rst m terms of Taylor approximation of xk�j is2

xk�j t xk �
j h

1!
x
0

k +
(j h)

2

2!
x
00

k � :::+ (�1)
m (j h)

m

m!
x
(m)
k ; (2.1)

where j = 1; 2; :::m: The relations (2.1) represent a Cramer system with

2The choice of m and h is supposed to be such that the Taylor approximation can
be used. The link between h and m is analyzed in Section 3.1
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the unknown x
(i)
k ; i = 1; 2; :::;m

xk�1 � xk t h
1!x

0

k +
h2

2! x
00

k � :::+ (�1)
m hm

m! x
(m)
k ;

xk�2 � xk t 2h
1! x

0

k +
(2h)2

2! x
00

k � :::+ (�1)
m (2h)m

m! x
(m)
k ;

:::

xk�m � xk t mh
1! x

0

k +
(mh)2

2! x
00

k � :::+ (�1)
m (mh)m

m! x
(m)
k :

(2.2)

The determinant of the system (2.2) is

� =
h
m(m+1)=2

1!2!:::m!

��������
1 1 1 ::: 1
2 22 23 ::: 2m

::: ::: ::: ::: :::
m m2 m3 ::: mm

�������� = h
m(m+1)=2

1!2!::: (m� 2)! :

Because for m � 2 we have � 6= 0, there exists a unique solution

x
(i)
k =

1

hi

mX
j=0

�i jxk�j ; i = 2; :::;m for m � i > 1; (2.3)

x
0

k =
xk � xk�1

h
for m = i = 1;

the coe¢ cients �i j being drawn in Table 1/Appendix.
Thus we obtained a backward approximation of derivatives, which represents
the key of LIL method. The Taylor approximation of the solution x, con-
sidered now as function of t in the neighborhood Vk; is

x(t) t x(tk)+
t� tk
1!

x
0
(tk)+

(t� tk)2

2!
x
00
(tk)+ :::+

(t� tk)m

m!
x(m)(tk): (2.4)

Next, integrating (2.4) in Vk we get

tk+� tR
tk�� t

x(t) dt =
� tR

� � t
x(t+ tk) dt t

� tR
� � t

�
mP
i=0

x
(i)
k t

i

�
dt =

=
mP

i=0;2;4;:::
i�m

1
2i(i+1)!h

i+1x
(i)
k = hxk + h

3 1
24x

00

k + h
5 1
1920x

(4)
k + :::

(2.5)

Remark 1 The zero coe¢ cients of the derivatives x(2i+1)k for i = 0; 1; 2; :::
in (2.5) represent a major advantage for the propagation of errors and com-
putation time.

If we use in (2.5) the derivatives expression (2.3) we have

tk+� tZ
tk�� t

x(t) dt t h
mX
i=0

�0 ixk�i ; (2.6)
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the coe¢ cients �0 i being given in Table 2(a)/Appendix. Using the same
way one can approximate x0 on Vk

tk+� tZ
tk�� t

x0(t) dt t
mX
i=0

�1 ixk�i ; (2.7)

the coe¢ cients �1i being drawn in Table 2(b)/Appendix.

To overcome the di¢ culty of Taylor approximation of the composite function
f we found, empirically, that the relations (2.6) could be considered as a
simple way to approximate the integral of f without altering the method
convergence. Thus

tk+� tZ
tk�� t

f (t; x(t)) dt t h
mX
i=0

�0 i fk�i; (2.8)

where fk�i := f (tk�i; x(tk�i)) .

Using (2.7) and (2.8) we can integrate (1.1) in Vk

mX
i=0

�1ixk�i = h
mX
i=0

�0 i fk�i :

Because �10 6= 0 , for every m (see Table 2/Appendix), the approximation
of the solution in Vk is

xk =
h

�10

mX
i=0

�0 i fk�i �
1

�10

mX
i=1

�1 i xk�i: (2.9)

If we denote

uk :=
1

�10

mX
i=0

�0 i fk�i; vk := �
1

�10

mX
i=1

�1 i xk�i;

the relations (2.9) become

xk = vk + huk ; k = 1; 2; :::n� 1 : (2.10)

Formula (2.10) represents the m th-order LIL method. In Table 1 the formu-
lae for orders one through �ve (m 2 f1; 2; 3; 4; 5g) are presented.



A Multistep Algorithm for ODEs 807

m

1 xk = xk�1 + h fk;

2 xk =
4
3xk�1 �

1
3xk�2 +

h
36 (25 fk � 2 fk�1 + fk�2) ;

3 xk =
5
3xk�1 �

13
15xk�2 +

1
5xk�3 +

h
45 (26 fk � 5 fk�1 + 4 fk�2 � fk�3)

4 xk = 2xk�1 � 8
5xk�2 +

26
35xk�3 �

1
7xk�4 +

h
12600 (6463 fk � 2092fk�1

+2298fk�2 � 1132fk�3 + 223fk�4);

5 xk =
7
3xk�1 �

38
15xk�2 +

62
35xk�3 �

43
63xk�4 +

1
9xk�5 +

h
14175 (6669 fk

�3122 fk�1 + 4358 fk�2 � 3192 fk�3 + 1253 fk�4 � 206 fk�5):

Table 1. LIL algorithms.

The study was achieved up to m = 8; but in this paper for the sake of
simplicity we considered only m 2 f1; 2; 3; 4; 5g. For m = 1 the LIL method
is equivalent to the backward Euler method.
The LIL method is an implicit method due to the presence of the term

fk in the right hand side which depends on xk. Therefore additional
computations are necessary in order to calculate fk . In this purpose we
approximate xk�1 in Vk (see (2.1))

xk�1 t xk �
h

1!
x0k +

h2

2!
x00k � :::+ (�1)

m h
m

m!
x
(m)
k :

Using for derivatives the relations (2.3) one obtains

xk�1 t xk �
1

1!

mX
i=0

�1 ixk�i +
1

2!

mX
i=0

�2 ixk�i � :::+
(�1)m

m!

mX
i=0

�mixk�i ;

from where one obtains

xk t
mX
i=1

"mixk�i; i = 1; 2; :::;m; m > 1: (2.11)

The coe¢ cients "mi are given in Table 3/Appendix.
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Using (2.11), fk becomes

fk = f

 
tk;

mX
i=1

"mixk�i

!
:

The relation (2.11) represents an extrapolation formula (predictor phase)
for xk and can be used to approximate the solution, but without an accept-
able accuracy, while (2.10) is the corrector phase.
Because (2.10) is a multi-step relation, a starting method (for example the
standard Runge-Kutta method) is necessary in order to calculate the m �rst
start values: x�1; x�2; :::; x�m .

3 The convergence

The convergence is analyzed using the Dahlquist theory which states that
a numerical method is convergent3 if it is consistent and stable (see [2], [4]
or [7-8]). In this purpose let us consider the LIL method (2.10) in the usual
form

�10xk+�11xk�1+ :::+�1mxk�m = �00 fk+�01 fk�1+ :::+�0m fk�m; (3.1)

with the characteristic polynomials

�m(s) =

mX
i=0

�1 i s
m�i; �m (s) =

mX
i=0

�0 i s
m�i; m 2 f1; 2; 3; 4; 5g: (3.2)

3.1 Consistency and errors

Following the Dahlquist theory, the LIL method is consistent because its
characteristic polynomials (3.2) satisfy �m(1) = 0 and �0m(1) = ��m (1)
for m 2 f1; 2; 3; 4; 5g: As it is known, the order of a linear multi-step method
is r if, and only if, r of the following coe¢ cients

Cj =
mX
i=0

�1 i i
j + j

mX
i=0

�0 ii
j�1; j = 1; 2; :::; r;

vanish.
Note that above the convention 00 = 1 was used. The values of C for LIL
method are given in Table 2.

3The �convergence� means here �uniform convergence� on an interval for any
Cm smooth function f .
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m C1 C2 C3 C4 C5 C6 C7 �t
1 0 0 -0.5 O(h2)
2 0 0 0 -0.04 O(h3)
3 0 0 0 0 -0.313 O(h4)
4 0 0 0 0 0 -1.37 O(h5)
5 0 0 0 0 0 0 -177.184 O(h6)

Table 2. C coe¢ cients.

From Table 2 one can deduce that the LIL order (the largest r for which C
is null) is m+ 1: The local truncation error �t is, for a given m; of order
m+ 1 (see e.g. [7]).
Comparatively, the local truncation error for the standard (4th-order)

Runge-Kutta algorithm is of order 4, and for the multi-step algorithms Adams-
Moulton and Gear are of order m+ 1, the same as for LIL algorithm.
The global truncation error (the accumulation of the local truncation

errors) per unit time is �t = �t=h. Hence the global truncation error per unit
time is of m order.

3.2 Stability

LIL is stable if all solutions of the following di¤erence equations

�m(s) = 0; m 2 f1; 2; 3; 4; 5g; (3.3)

are bounded. A necessary and su¢ cient condition for stability is that all
zeros sk ; k = 1; 2; :::;m of �m satisfy j skj � 1 and that zeros with
j skj = 1 be simple. It is easy to see that �1(s) = s � 1 and for m � 2;
�m(s) = (s � 1)m�1(s) (Table 3) with the zeros, numerically found for
m = 3; 4; 5, given in Table 4.

m = 2 1(s) = (3 s� 1);
m = 3 2(s) = (15 s

2 � 10 s+ 3);
m = 4 3(s) = (35 s

3 � 35 s2 + 21 s� 5);
m = 5 4(s) = (315 s

4 � 420 s3 + 378 s2 � 180 s+ 35):

Table 3. The ploynomials m�1.

s1 s2 s3 s4 s5
m = 2 1 0:33 - - -
m = 3 1 0:33 + i 0:30 0:33� i 0:30 - -
m = 4 1 0:40 0:30 + i 0:52 0:30� i 0:52 -
m = 5 1 0:40 + i 0:17 0:40� i 0:17 0:26 + i 0:72 0:26� i 0:72

Table 4. The zeros of the characteristic equation (3:3):



810 Marius-F. Danca

Hence the LIL method is stable and therefore we have the following result

Theorem 2 The LIL method for to the initial value problem (1.1) is con-
vergent for all m 2 f1; 2; 3; 4; 5g:.
Proof. Because LIL is consistent and stable, following the Dahlquist

theory, it is convergent.

4 Time stability

An integration method may have low round-o¤ error and low truncation
error, but be totally worthless because it is time unstable. The standard
method for testing the time (numerical) stability is to apply the integration
method to the �rst-order linear test equation

:
x = �x; x(0) = x0; (4.1)

where x; x0; � may be complex. A method is time (numerically) stable
for speci�ed values (�; h) if it produces a bounded sequence fxng when
applied to the test problem (4.1) [7]. The set of the complex values z = �h
for which fxng is bounded is called the stability region of the method. When
an integration method is applied to the system (4.1) the result is a linear,
discrete-time system with a �xed point at the origin. This means that the
stability regions contain the half plan Re(z) � 0: Therefore the stability of
this �xed point determines the time stability of the integration method.
Although this stability criterion guarantees that a method is stable only when
integrating a linear system, and not for nonlinear systems it is an usual way
to compare numerical performances for di¤erent algorithms.
Following the theorem which states that a linear multi-step method is

time stable for a particular z if and only if, the equation �m(�) = z �m(�)
has the following properties: all roots satisfy j � j � 1; and all roots with
j � j = 1 are simple (see e.g. [8]), the proof of the time stability of LIL method
follows from convergence study.
In order to draw the stability regions let us de�ne

Pm(�) := �m(�)� z �m(�):

Then, a linear multi-step method has the stability region S , the set
of all points z 2 C such that all the roots of Pm(�) = 0 lie inside or on
the unit circle and those on the unit circle are simple. Hence we obtain the
equation

z =
�m(�)

�m(�)
; (4.2)

which has to be solved for any given z 2 C . But instead of solving (4.2)
for given z , we can give � = ei � with j �j = 1 and plot

z =
�m(e

i �)

�m(e
i �)
; (4.3)
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for � 2 [0; 2�] The set thus mapped must contain @ S . The stability region
of a numerical stable algorithm has to contain the origin in his boundary.
In Figure 1 the stability regions for LIL algorithm for m 2 f1; 2; 3; 4; 5g
are drawn. One can observe that LIL algorithm has, for all m; large (even
unlimited) regions of stability, including the entire left-half complex plane,
typically for implicit algorithms: The time stability of LIL method is more
e¢ cient than that of other known algorithms and is comparable with time
stability of the Gear�s algorithm (see e.g. [5] where the stability regions were
drawn for several known algorithms).

(a) (b)

(c) (d)
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(e)
Figure 1.The stability regions for (m+ 1)th LIL method: a) m = 1; b)

m = 2; c) m = 3; d) m = 4; e) m = 5:

Taking account of the fact that higher order is not always higher accuracy,
an acceptable compromise between the accuracy, time stability and compu-
tational time was proved to be m = 3.

5 Applications

5.1 LIL versus standard methods

The goal of this section is to compare the characteristics of few known
standard algorithms (the 4th-order methods: Runge-Kutta, Gear, Adams-
Moulton, the 3th-order Adams-Bashforth method and the Milne method) and
4th-order LIL method. For this purpose we integrated two simple examples,
with known analytical solutions: the Bernoulli equation

2 t2
:
x(t)� 4 t x(t)� x2(t) = 0;

and
:
x (t) = cos(t):

The following values were calculated:
- the relative error "r =

P
jxa � xj =

P
xa ; where xa is the analytical

solution. The sum is taken over the integration interval.
- the maximum absolute error: � = max

k
jxa;k � xkj ; where xa;k is the

exact solution in tk:
- the computation time t4

The results are presented in Tables 5 and 6.

4 t is here only a relative value since it depends on the used code (Turbo Pascal, 64
bits), and the computer processor (500 MHz ).
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(a) R-K Gear A-M A-B Milne LIL
"r 1.9�10�4 1.9�10�4 1.1�10�7 1.1�10�7 1.4�10�7 1.4�10�7
� 1.9�10�2 2.0�10�2 1.2�10�5 1.2�10�5 1.8�10�5 1.5�10�5
t [s] 0.16 0.16 0.16 0.10 0.10 0.16

(b) R-K Gear A-M A-B Milne LIL
"r 3.8�10�5 3.8�10�5 2.3�10�10 2.3�10�10 2.8�10�10 2.8�10�10
� 1.9�10�3 2.0�10�3 1.2�10�8 1.8�10�8 1.8�10�8 1.5�10�8
t [s] 0.82 0.71 0.82 0.43 0.71 0.87

Tabel 5. Bernoulli equation integrated with:
a) h = 0:01; t 2 [1; 100]; b) h = 0:001; t 2 [1; 50] :

(a) R-K Gear A-M A-B Milne LIL
"r 2.4�10�2 4.9�10�2 7.7�10�4 4.0�10�3 5.0�10�3 5.0�10�3
� 3.7�10�2 5.3�10�2 4.9�10�4 2.6�10�3 3.9�10�3 3.3�10�3
t[s] 0:0 0.0 0.0 0.0 0.0 0.0

(b) R-K Gear A-M A-B Milne LIL
"r 4:9 � 10�4 9:9 � 10�4 3:9 � 10�7 1.5�10�6 1.9�10�6 1:9 � 10�6
� 7:5 � 10�4 1:0 � 10�3 2:4 � 10�7 2.7�10�7 1.5�10�6 1:2 � 10�6
t[s] 0:16 0.16 0.16 0.16 0.16 0.16

Table 6.
:
x (t) = cos(t), t 2 [0; 2�] integrated with:

a)h = 0:05; b) h = 0:001:

Comparing the results in Tables 5 and 6 one can deduce that LIL�s perfor-
mances, for these two examples, are comparable to those of known methods
like Gear, Adams-Moulton and Adams-Bashforth.

5.2 Rabinovich-Fabrikant system

The hard test was the integration of the Rabinovich-Fabrikant system.
Rabinovich and Fabrikant [6] studied the following dynamical system (named
the R-F model hereafter)

:
x1 = x2(x3 � 1 + x21) + ax1;
:
x2 = x1(3x3 + 1� x21) + ax2;
:
x3 = �2x3(b+ x1x2);

a; b 2 R: (5.1)
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(a)

(b)
Figure 2. Two chaotic trajectories of R-F system: a) Three-dimensional
phase portrait for a = 0:1 , b = 0:2876; b) Plane phase portraits and time

series for a = �1; b = �0:1.
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This system models the stochasticity arising from the modulation instability
in a non-equilibrium dissipative medium. Some qualitative analysis and nu-
merical dynamics have been reported in [6] and a carefully re-examination
together with many new and rich complex dynamics of the model, that were
mostly not reported before, are presented in [3]. The chaotic R-F model
proved to be a great challenge to the classical numerical methods, most of
them being not successful to study the complex dynamics of this special
model.

All computer test results and graphical plots in Figures 2-5 were obtained
with a special Turbo Pascal code which plots phase diagrams and time series
The code for LIL method may be obtained directly from the author.

For a < b, the system is characterized by the appearance of chaotic attractors
in the phase space (see e.g. Figures 2).

(a)
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(b)
Figure 3. Two di¤erent sizes of the same attractor obtained with di¤erent
step-sizes: a) for h = 5� 10�3; x3max = 35 while b) for h = 5� 10�4;

x3max = 350:

It is well known that because of the sensitive dependence on initial data, a
chaotic system tends to amplify, often exponentially, tiny initial errors. These
kind of errors could be ampli�ed to so large, that it is almost impossible to
draw mathematically rigorous conclusions based on numerical simulations.
A typical case can be seen from Figure 3, from where one deduces that
the attractor�s size along the x3-axis increases signi�cantly as the step-size
decreases. This problem has been noticed for a long time, and has promoted a
useful theory called �shadowing,�namely, the existence of a true orbit nearby
a numerically computed approximate orbit [1]. We have also found that the
strong dependence on the step-size for R-F system, for certain values of b
and with the same initial conditions, could produce totally di¤erent attractors
(see Figures 4).

There are few special cases which proved to be a real challenge for the
numerical methods. As example for the case a = 0:3 and b = 0:1 (shown in
Figure 3), the 4th-order Runge-Kutta and Milne methods failed while only
the Gear and Adams-Moulton methods seem to give comparable results to
those obtained with LIL method; the attractors obtained with the 3th-order
Adams-Bashforth method are di¤erent to those obtained with Gear, Adams-
Moulton and LIL methods (Figures 5).
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(a)

(b)
Figure 4. Two di¤erent attractors (plotted here by points), with the same
initial conditions and parameters values (a = 0:12; b = 0:05), but with

di¤erent step-size a) h = 0:05 and b) h = 0:005:
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(a)

(b)
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(c)

(d)
Figure 5. The case a = 0:3 and b = 0:1 integrated with: a) the 4th-order
Adams-Moulton ; b) the 4th-order Gear algorithm; c) 3th Adams-Bashforth

algorithm; d) 4th-LIL algorithm.
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6 Concluding remarks

In this paper we present a linear implicit multi-step method, LIL, for
ODEs proving its convergence, too. The method could be considered as
an acceptable alternative to the classical algorithms for ODEs and can be
successfully used in practical applications. One of the advantages is that in
(2.5) only the even order derivatives appear, this fact reducing the truncation
error and the computational time.

The algorithm seems to be stiffly-stable since it can integrate efficiently
and accurately enough dynamical systems like R-F which presents stiff char-
acteristics.

The implementation of adaptive step-size represents a task for a future
work. The basic approach would be applicable directly to variable step-size.
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Appendix

i = 2 δ20 δ21 δ22 δ23 δ24 δ25
m = 2 1 -2 1 · · · · · · · · ·
m = 3 2 -5 4 -1 · · · · · ·
m = 4 35/12 -26/3 19/2 -14/3 11/12 · · ·
m = 5 15/4 -77/6 107/6 -13 61/12 -5/6

i = 3 δ30 δ31 δ32 δ33 δ34 δ35
m = 3 1 -3 3 -1 · · · · · ·
m = 4 5/2 -9 12 -7 3/2 · · ·
m = 5 17/4 -71/4 59/2 -49/2 41/4 -7/4

i = 4 δ40 δ41 δ42 δ43 δ44 δ45
m = 4 1 -4 6 -4 1 · · ·
m = 5 3 -14 26 -24 11 -2

i = 5 δ50 δ51 δ52 δ53 δ54 δ55
m = 5 1 -5 10 -10 5 -1

Table 1. δ coefficients.
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(a) m = 1 m =2 m =3 m = 4 m = 5
σ00 1 25/24 13/12 6463/5760 741/640
σ01 0 -1/12 -5/24 -523/1440 -1561/2880
σ02 · · · 1/24 1/6 383/960 2179/2880
σ03 · · · · · · -1/24 -283/1440 -133/240
σ04 · · · · · · · · · 223/5760 1253/5760
σ05 · · · · · · · · · · · · -103/2880

(b) m = 1 m =2 m =3 m =4 m =5
σ10 1 3/2 15/8 35/16 315/128
σ11 -1 -2 -25/8 -35/8 -735/128
σ12 · · · 1/2 13/8 7/2 399/64
σ13 · · · · · · -3/8 -13/8 -279/64
σ14 · · · · · · · · · 5/16 215/128
σ15 · · · · · · · · · · · · -35/128

Table 2. σ coefficients .

m εm1 εm2 εm3 εm4 εm5

2 2 -1 · · · · · · · · ·
3 3 -3 1 · · · · · ·
4 4 -6 4 -1 · · ·
5 5 -10 10 -5 1

Tabel 3. ε coefficients.
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