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Abstract

The aim of this paper is to prove numerically, via computer graphic simulations, that the synthesis
algorithm provided by Danca et al. in [M.-F. Danca, W. K. S. Tang, G. Chen, A switching scheme

for synthesizing attractors of dissipative chaotic systems, Appl. Math. Comput. 201 (2008) 650-667]
can be utilized to synthesize any attractor of a dynamical system modeling a two-predator, one prey
Lotka-Volterra like system. The algorithm switches in a periodic deterministic or a random way the
control parameter inside a set of a chosen values. The obtained attractor is the same with the attractor
obtained for parameter value taken as averaged value of the switched control values. This simple and
e¤ective algorithm relies on a convex property induced in the set of the attractors corresponding to
the chosen switching parameters. The algorithm was tested successfully on systems depending linearly
on the control parameter like Lorenz, Chen, Rossler, networks and other systems.

keywords: stable attractors, chaotic attractors, Lotka-Volterra system, parameter switching

PACS classi�cation codes: 05.45.Ac, 05.45.Pq, 42.62.Be

1 Introduction

In [1] we provided, via numerical approach and computer simulations, that switching the control parameter
every �nite time intervals in dynamical systems modeled by the following initial value problem which
depend linearly on the control parameter

_x = fp(x); x(0) = x0; (1)

where p 2 R and fp : Rn �! Rn has the expression

fp(x) =g(x) + pMx; (2)

with g : Rn �! Rn a continuous nonlinear function, M a real constant n � n matrix, x0 2 Rn, and
t 2 I = [0;1); while some numerical method for ODE is applied to (1), the obtained attractor is identical
to one of the system attractors.
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This class of dynamical systems is enough large containing known systems such as Lorenz, R½ossler,
Chen, Lotka-Volterra like systems, electronic circuits, systems modeling the terrestrial magnetism, net-
works, etc.
As it is known, a trajectory (called also in a great majority of standard text books orbit) represents all

points in the graph of a single solution to a considered di¤erential equation. Geometrically, it represents the
curve along which a solution follows as time changes. In the uniqueness case, to each solution corresponds
a unique global attractor (see Appendix). In this paper, for convenience, we shall omit unless necessary
the word �global� and simply call attractors the orbits (actually their numerical approximation after
neglecting a su¢ ciently long period of transients [2]) obtained by a numerical method for ODEs with �xed
step size h after the transients were neglected. In this purpose, all the numerical experiments were made
considering the same attraction basin for the initial conditions.
Despite the fact that there are di¤erences between computation and theory, nonetheless, the numerical

integration of (1) via computer graphic simulations can give generally excellent approximations to the
orbits within the invariant sets [3]. Also, the orbits that start near a hyperbolic attractor will stay
near and they will be shadowed by orbits within the attractor because attractors arise as the limiting
behavior of orbits. Therefore, the shadowing property of hyperbolic sets [4] enables us to recover long
time approximation properties of numerical orbits.
We shall consider throughout the paper the following assumptions: the existence and uniqueness of

solutions on the maximal existence interval I are veri�ed and there exist only hyperbolic equilibria.

Remark 1 It is known that numerical methods for ODEs may correctly reproduce di¤erent kinds of limit
sets that are present in the di¤erential equations. The required conditions include asking that the behavior
in the continuous system be structurally stable. Generaly this condition is not satis�ed for the Lotka�
Volterra systems, which is why the numerical methods used do not correctly reproduce the behavior of that
system. Also, the problem with discretization induced by numerical methods, is that it introduces new
limit-set behaviors in addition to that already existing in the underlying continuous system. However, the
accuracy and the biologically meaningful of our numerical results make it worth the e¤ort and overcome
the above possible inconvenience.

The algorithm presented in this paper consists in use a time varying, more preciously periodically or
even randomly switching parameter, according to some design rule. It will be demonstrated, empirically
by various experiments, that a desired attractor can be duly obtained by the proposed switching scheme.
The organization of the paper is as follows: Section 2 describes shortly the synthesis algorithm, Sec-

tion 3 presents his application to the case of a Lotka-Volterra three dimensional system and Section 4
summarizes the results of this paper and sketches possible future research directions for this algorithm
and system.

2 Synthesis algorithm

Notation 2 Let A be the set of all global attractors depending on parameter p, including attractive stable
�xed points, limit cycles and chaotic (possibly strange) attractors; P �R be the set of the corresponding
admissible values of p and PN = fp1; p2; : : : ; pNg � P a �nite ordered subset of P containing N di¤erent
values of p, which determines the set of attractors AN = fAp1 ; Ap2 ; : : : ; ApN g � A.

We assume that we can access all the values of PN = fp1; p2; : : : ; pNg for which the system behaves
stable and/or chaotic.
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Following the above assumptions, it is naturally to de�ne a bijection between the sets P and A. Thus,
giving any p 2 P, a unique global attractor is speci�ed, and vice versa.
Choosing a �nite subset PN = fp1; p2; : : : ; pNg the deterministic synthesis algorithm relies on the

following deterministic time switching rule which is applied inde�nitely while the numerical method for
IVP (1) generates the attractor

[(m1h)p'(1); (m2h)p'(2); : : : ; (mNh) p'(N)]; (3)

where the "weights" mi are some positive integers and ' permutes the subset f1; 2; : : : ; Ng: The algorithm
acts as follows: in the �rst time subinterval of length �t1 = m1h, p will take the value p'(1), for the next
m2 integration steps, p = p'(2) (Fig. 1) and so on until the N -th time subinterval of length mNh where
p = p

'(N)
after which the algorithm repeats. Thus, the relation (3) is (m1 +m2 + :::+mN )h periodic. In

order to simplify the notation, for a �xed step size h, the scheme (3) will be denoted hereafter

[m1p'(1); m2p'(2); : : : ;mN p'(N)]: (4)

For example, by the scheme [1p3; 3p1; 2p2] one should understand the in�nite sequence of p : 1p3; 3p1; 2p2; 1p3;
3p1; 2p2; : : : which means that while the considered numerical method integrates (1), p switches in each
mih time subinterval between values of P3 = fp1; p2; p3g: The algorithm will generate a synthesized
attractor, A�; which belongs to A.
To prove that A� 2 A we prove that A� is identical1 to the averaged attractor denoted Ap� with

p� =

NP
k=1

p'(k)mk

NP
k=1

mk

: (5)

If we denote �k = mk=
NP
k=1

mk it is easy to see that p� is a convex combination p� =
NP
k=1

�kp'(k) since

NP
k=1

�k = 1; fact which represents a major property and advantage. Therefore p� 2 (p1; : : : ; pN ), whatever

the values pi are chosen.
Also, taking into account the bijection between P and A, we are entitled to consider that the same

convex structure is preserved into A: Therefore, for whatever switched values of p in PN , the synthesized
attractor A� will belong inside the ordered set AN , endowed with the order induced by the mentioned
bijection.

Remark 3 i)The size of the integration step h is an important parameter which may in�uence the results
due the convergence properties of the considered method for ODEs. Obviously, both attractors A� and Ap�
are simulated with the same �xed step size and same initial conditions.
ii) To relative large values for m or large N may correspond di¤erences between the two attractors A� and
Ap� [1]. However, in these cases, A� still remains inside of a relative thin neighborhood of Ap� :

The pseudocode of the synthesis algorithm for chosen N; Tmax; h; m1; : : : ;mN ; p'(1) ; : : : p'(N)
is

depicted in Fig. 2

1By identity will understand a perfect as possible overlap of orbits, histograms and Poincaré sections, taking account on
some inherent errors caused by the numerical computation or the screen resolution.
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Input : N; Tmax; h; m1; : : : ;mN ; p'(1) ; : : : p'(N)

repeat
for i = 1 to m1 do

integrate (1) with p = p
'(1)

t = t+ h
end
...
for i = 1 to mN do

integrate (1) with p = p
'(N)

t = t+ h
end

until t � Tmax

Fig. 2

To support the identity between A� and Ap� ; which veri�es the fact that A� belongs to A, histograms,
Poincaré sections and phase plots were utilized.
For example, with the scheme [1p1; 2p2] applied to the Lorenz system with p1 = 82; p2 = 98:5 ,

p� = (1 � p1 + 2 � p2)=(1 + 2) = 93; the synthesized attractor A� obtained by the synthesis algorithm is
similar to A93 (see Fig. 3b left side where A� and A93 are overplotted and Fig. 3 b right side, where
their histograms are overplotted). Remark that even Ap1 and Ap2 are chaotic (Fig. 3a), the synthesized
attractor A� is periodic (stable limit cycle). However, the scheme [2p1; 1p2] will give p� = 87:5 (Fig. 3c)
for which A� is a chaotic attractor. Because of in�nite time required to draw "entirely" chaotic attractors
(asymptotic property), there is a relative small di¤erence between the two attractors, A� and Ap� (see
Poincaré section with the plane x3 = 130 in Fig. 3c).
If the scheme (4) is applied in a random way introduced in [5], the synthesis algorithm generates again

an attractor A� which, based on the mentioned above convexity property, will belong inside the set of
considered attractors AN endowed with the order induced by the order of the parameter values in PN .
Let us consider again the Lorenz system with N = 2; p1 = 130 and p2 = 170 (the attractors A130;and
A170 are plotted in Fig. 4 a,b). Using the scheme (4) in some random way (see Fig. 5 where rand
means some random procedure with uniform distribution generating the numbers 1 or 2) the synthesized
attractor A� will be identical to Ap� with p� = 150. Both attractors are overplotted in Fig. 4c while the
overplotted histograms and Poincaré sections (Fig. 4 d,e) underline this identity.

repeat
label = rand(2)
if label = 1 then

integrate (1) with p = p1
if label = 2 then

integrate (1) with p = p
2

t = t+ h
until t � Tmax

Fig. 5

4



Remark 4 i) The synthesis algorithm should not be considered as being a control algorithm since, before
the algorithm starts, the system can evolve stable and then the algorithm just change the behavior from a
stable attractor to another one. Therefore this algorithm could be viewed as a kind of "general" stabilization
because either the system evolves initially stable or chaotic, the algorithm may switch that behavior to
another one [6].
ii)The synthesis algorithm can be use to chaoti�cation [1]. Regarding the control/anticontrol characteristics
of synthesis algorithm, it should be noti�ed that it can be used when a targeted stable/unstable attractor
value of p cannot be set directly.
iii) One of the most important characteristics of the synthesis algorithm is the fact that it may explain
how in real systems, belonging to the class modeled by (1), deterministic or random parameter switches
may induce chaos or stable behaviors.

Let the sets PN and AN . Suppose that certain targeted value of bp =2 PN cannot be accessible. Then,
using the bifurcation diagram for the considered dynamical system, it is possible to synthesize an attractor
corresponding to bp using the synthesis algorithm with the values of PN : The only su¢ cient (and necessary
too [1]) condition on bp is to belong inside of the real interval (p1; : : : ; pN ) (bp cannot be chosen outside of
(p1; : : : ; pN ), because of convexity property): Next, to synthesize the attractor Abp, we must choose mi:
Thus, having p1; : : : ; pN �xed, the equation (5) for p� = bp with the unknown mi has to be solved. With
the obtained values for mi, the scheme (4) is next applied. The synthesized attractor A� is identical, as
shown above, to Abp. Thus, using the synthesizes algorithm one can force the system to evolve on the
desired stable or unstable orbit corresponding to bp:
Also, the following situation is possible: PN is not set a priori. Then, mi and PN have to be determined

such that relation (5) be veri�ed with the only known bp.
The solutions are not unique in both situations because the elements of PN belong in a compulsory

way to one of the in�nite number of p-intervals which compose P.
For example, suppose we want to synthesize, with the scheme [m1p2;m2p1]; a stable orbit for the

Lorenz system, corresponding to bp = 150 and starting from PN = f130; 170g: Then, one of the possible
solutions to (5), is m1 = 2 and m2 = 1:

3 Synthesis of Lotka-Volterra attractors

The original system discovered by both Volterra [7] and Lotka [8] independently, consisted of two entities.
Vito Volterra developed these equations in order to model a situation where one type of �sh is the prey
for another type of �sh [9]. This model was generalized by Smale [10] for dimensions n � 3.
Nowadays, there are several three-dimensional competitive Lotka-Volterra systems which are proposed

to provide a simpli�ed model of two-species predator and one prey population dynamics2 . The equations
exhibit complex oscillatory behavior (mimicking the boom-and-bust cycles that species in a predator/prey
relationship are presumed to undergo, though these cycles seem not to be empirically observable, at least
in the form they appear in the dynamics of Lotka-Volterra). In a 1988 paper [11] Samardzija and Greller
propose a biologically realistic two-predator, one prey generalization model of the Lotka-Volterra equations

on which we focus in this paper (we refer also [12])

2This system may be interpreted as a chemical, biochemical, or ecological model.
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:
x1 = x1 � x1x2 + bx21 � ax3x21;:
x2 = �x2 + x1x2;
:
x3 = �px3 + ax3x21;

(6)

where a; b; p are positive parameters. In the real world, these values would certainly not remain constant.
The time of day and the current season a¤ect these values. For example certain animals only mate during
certain seasons, some animals hibernate or migrate when the seasons change, some animals hunt by day,
and others are nocturnal and so on. For these reasons all parameters should be functions of t rather than
constants, but the complexity of (6) is daunting. The (6) model remains tractable by letting a; b values be
constant rather than functions this particularization being enough realistic by biologic point of view. In
this paper, we consider p as being the control parameter, while all the other parameters are kept constant
as presented in [11]: a = 2:9851 and b = 2:
The stability of the �xed points are established in [11] where it is shown that in a wide range of

parameters the behavior is chaotic.
The most intriguing attractor of this system is, with no doubt, the fractal torus (characterization

introduced in [11]). This particular attractor exhibited by system (6) for certain values of a; b and p is
interesting because has a structure di¤erent from attractors such as the Rössler, Lorenz or Chen attractors
(see e.g. Fig. 9). This typical attractor consists of a slow and a fast manifold, shaped like a sphere, the
slow dynamics being con�ned to a very skinny tube on the inside of the attractor, while the fast oscillatory
dynamics being on the outside surface of attractor. Also, all numerical experiments reveal the fact that
the initial conditions play an important role leading to several di¤erent fast manifolds, the slow manifolds
being all tangled up along one line. The shape of the fractal torus suggests a quasiperiodic motion.
Even the higher dimensional Lotka-Volterra models, compared to the usual two dimensional Lotka-

Volterra Equations, are more complicated as one might think and have a bad reputation among biologists
as being oversimpli�ed and simplistic models, the proposed variant allows positive feedback among the
species.
While the dynamics of three-dimensional Lotka-Volterra systems are well known and studied exten-

sively in several works, in this paper we focus on the behavior of (6) when the control parameter is
switched, via the synthesis algorithm, in a deterministic and random manner.
The standard Runge-Kutta method with �xed step size was utilized. To sustain the accuracy of the

results, beside phase portraits, histograms and Poincaré sections were utilized. The integration step size
was h = 10�4 � 10�2:

Remark 5 Because of the pronounced asymptotic character of these attractors, however long time was
�xed to integrate the system, the results have never been obtained with enough accuracy. However, accept-
able results were found for Tmax = 10000.

To facilitate the attractors synthesis, the bifurcation diagram was determined (Fig. 6). In the same
�gure, all the attractors utilized to synthesis are plotted in the bottom, while the synthesized attractors
in the top. The results are presented in Table 1. In the �rst three considered cases, N = 2 (Fig. 7-9)
while in the forth case (Fig. 10) the algorithm is applied for N = 4; to underline the robustness of the
algorithm. In Fig. 11 is obtained the same attractor A� like in Fig.10 with the random way presented in
Fig. 5, for p1 = 3 and p2 = 4.
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Scheme p1 p2 p3 p4 p� Remarks
[1p1; 1p2] 2:9 3:7 � � 3:3 Ap1 ; Ap2 stable, A

� chaotic (Fig. 7)
[1p1; 1p2] 2:8 3:2 � � 3 Ap1 stable, Ap2 chaotic, A

� Fractal torus (Fig. 8)
[1p1; 1p2] 3 5 � � 4 Ap1 Fractal torus, Ap2 stable, A

� stable (Fig. 9)
[1p1; 1p2; 2p3; 3p4] 1:3 3 4 5 3:9 Ap1;3;4 stable, Ap2 Fractal torus A

� stable (Fig. 10)
random 3 4 � � 3:9 Ap1 Fractal torus, Ap2 stable, A

� stable (Fig. 11)

Table 1

4 Conclusions and further directions

In this study, we veri�ed numerically that any attractor of the Lotka-Volterra system (6) can be synthesized
by the synthesis algorithm.
This algorithm may be used to explain what is happens in a system like Lotka-Volterra if, accidentally

or intentionally, the control parameter switches in time.
Thus, if we switch periodically the control parameter following a determinist rule, the orbit can be

forced to reach a desired stable or unstable attractor. The control parameter is switched inside a �nite
subset PN of the set of all admissible values P; every �nite time subintervals. The synthesized stable
attractor is identical to an attractor, belonging to the set of all attractors A; which corresponds to the
averaged value of the switched values of PN :
Mathematical studies on this algorithm remain a task for future works such as the convergency of the

synthesized attractor A� to the averaged attractor Ap� , the study of the step size in�uence, and so on.

Appendix
De�nition 6 A global attractor of a dynamical system is a compact set composing of all bounded global
trajectories of system (1) (see e.g. [13]).

De�nition 7 A local attractor for the dynamical (1) is a compact set, invariant under fp, which attracts
its neighboring trajectories (see e.g.[14]).

A global attractor can be considered, roughly speaking, as a region of a dynamical system�s state space
that the system can enter but not leave, and which contains no smaller such region. From the de�nition,
a global attractor contains all the dynamics evolving from all possible initial conditions. In other words,
it contains all solutions, including stationary solutions, periodic solutions, as well as chaotic attractors,
relevant to the asymptotic behaviors of the system.
The terminology local attractor is sometimes used for attractors which are not global attractors. A

global attractor may contain several local attractors. A global attractor is hence considered as being
composed of the set of all local attractors, where each local attractor only attracts trajectories from
a subset of initial conditions, speci�ed by its basin of attraction. Therefore, for a �xed parameter p,
di¤erent local attractors may be obtained depending on the choice of the initial condition, in contrast to
the uniqueness of the case of a single global attractor. For example, if one considers the Lorenz system with
the control parameter r = 2:5, there are three local attractors: the origin (saddle) and two symmetrical
�xed points (sinks) X(�2;�2; 1:5). A unique local attractor may also be the global attractor. For the
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same example of Lorenz system, when r = 28, there exists only a single local attractor, which is a global
attractor too (known as the Lorenz strange attractor).
More details and background on attractor notion can be found in [15].
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Figure Captions
Fig. 1 Synthesis algorithm (sketch).
Fig. 2 Pseudocode of synthesis algorithm
Fig. 3 Synthesis algorithm applied for the Lorenz system with the scheme [1p1; 2p2]; a) Attractors

Ap1 and Ap2 for p1 = 82; p2 = 98:5; b) The synthesized and averaged attractors A� and Ap� (p� =
93) overplotted (left) and overplotted histograms (right); c) Overplotted attractors A� and Ap� (p� =
87:5) obtained with the scheme [2p1; 1p2] (left) and the overplotted Poincaré section with the plane x3 =
130 (right).
Fig. 4 The synthesized and averaged attractors A� and Ap� obtained with the random way described

in Fig. 5 with N = 2; P2 = f130; 170g; a, b) The attractors A130 and A170; c) Attractors A� and
Ap� overplotted with p� = 150; d) Overplotted histograms; e) Overplotted Poincaré sections with the
plane x3 = 130:
Fig. 5 Pseudocode for a random variant of the synthesis algorithm .

Fig. 6 Bifurcation diagram for the Lotka-Volterra system with the attractors utilized for synthesis.
Fig. 7 A chaotic attractor A� synthesized with scheme [1p1; 1p2], for p1 = 2:9, p2 = 3:7 and p� = 3:3;

a,b) The stable periodic attractors Ap1and Ap2 ; c) A
� and Ap� overplotted; d) Overplotted histograms.

Fig. 8 The Fractal torus synthesized with the scheme [1p1; 1p2] for p1 = 2:8, p2 = 3:2 and p� = 3;
a,b) The stable �xed point attractor Ap1 and the chaotic attractor Ap2 ; b) The fractal torus A

� and
Ap� overplotted; d) Histograms overplotted.
Fig. 9 Stable attractor synthesized with the scheme [1p1; 1p2] for p1 = 3, p2 = 5 and p� = 4; a,b) The

fractal torus and stable limit cycle Ap1 and Ap2 ; c) A
� and Ap� overplotted;d) Overplotted histograms.

Fig. 10 Stable attractor obtained with the scheme [1p1; 1p2; 2p3; 3p4] for p1 = 1:3, p2 = 3; p3 = 4 and
p4 = 5:Here p� = 3:9; a-d) Attractors A1�4; e) A� and Ap� overplotted; f) Overplotted histograms.
Fig. 11 The same stable attractor as in Fig. 10 obtained in the random way presented in Fig. 5.
Table Caption
Table 1 The Lotka-Volterra attractors synthesized with both deterministic and random algorithms.
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