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Abstract

In this paper, a simple parameter switching (PS) methodology is proposed

for sustaining the stable dynamics of a fractional-order chaotic financial

system. This is achieved by switching a controllable parameter of the system,

within a chosen set of values and for relatively short periods of time. The

effectiveness of the method is confirmed from a computer-aided approach,

and its applications to chaos control and anticontrol are demonstrated. In

order to obtain a numerical solution of the fractional-order financial system,

a variant of the Grünwald-Letnikov scheme is used. Extensive simulation

results show that the resulting chaotic attractor well represents a numerical

approximation of the underlying chaotic attractor, which is obtained by

applying the average of the switched values. Moreover, it is illustrated that

this approach is also applicable to the integer-order financial system.
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1. Introduction

Today, many economists still focus on linear dynamics (e.g., using the

Hartman–Grobman theorem), thinking of that nonlinear dynamics are in-

tractable although the economic world is by nature nonlinear. Nevertheless,

the intrinsic relation between chaos theory and finance theory has been

widely explored since the pioneering work of Smale in 1953 [1]. As a result,

financial systems are commonly modeled by continuous-time chaotic sys-

tems such as the forced Van-der-Pol model [2], Behrens-Feichtinger model

[3], Cournot-Puu model [4], IS-ML model [5], and so on (see also [6–9] and

references therein). In addition, many recent studies on economics have

demonstrated the adverse effect of chaotic dynamics on economic systems.

Due to the instability of a periodic solution, bifurcation, or other typical

phenomena which could appear in chaotic economic systems, some mea-

sures and actions are required. Many researchers suggested applying chaos

control in financial systems in order to improve their performances such as

preserving stability. Indeed, controlling a chaotic market model may lead

to economic efficiency. Therefore, interest in suppressing chaos in economic

models has raised from the scientific community [10–14].

In this paper, the study is devoted to the chaotic financial system intro-

duced in [16], which is originally of integer-order, but lately being extended

to fractional-order in [17]. The system is described by the following differ-
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ential equations:
dxq11
dtq1

= x3 + (x2 − p)x1,

dxq22
dtq2

= 1 − bx2 − x21,

dxq33
dtq3

= −x1 − cx3,

(1)

where p, b and c are nonnegative coefficients with physical meanings and

significance clearly explained in [15]; q = (q1, q2, q3)
T represents the frac-

tional order of the derivatives, in which qi ∈ (0, 1], with qi = 1, i = 1, 2, 3,

representing the integer-order case.

For the integer-order financial system (1), i.e., with qi = 1, i = 1, 2, 3,

its local topological structure and bifurcation have been studied in detail

(see [15, 16]). For its fractional-order version, the nonlinear dynamics have

also been analyzed in [17, 18]. Furthermore, this financial system model has

been investigated regarding chaos control and synchronization in [14, 19].

In this paper, we show numerically that any stable attractor of the finan-

cial system (1) can be approximated by switching p within a set of chosen

values in deterministic and relatively small time intervals. Compared to

other methods, such as OGY-like schemes, where unstable periodic orbits

are “forced” to become stable, here one obtains whatever stable attractor

that is desirable.

The system (1) can be reformulated as the following general initial value

problem (IVP):

dq

dtq
x(t) = f(x(t)) = g(x(t)) + pAx(t), x(0) = x0, t ∈ I = [0, T ], (2)

where x : I → R3, g : R3 → R3 is a continuous nonlinear function, A is a

3 × 3 real constant matrix, and p is a tunable real parameter to be used for

control by switching its values later.
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The IVP (2) is useful for describing a large class of well-known dynamical

systems of integer-order or fractional-order, for example the Lorenz, Rössler,

Chen, Chua systems, to name just a few.

Referring to (1), one has

g(x) =


x3 + x1x2

1 − bx2 − x21

−x1 − cx3

 , A =


−1 0 0

0 0 0

0 0 0

 .

When q = 1, system (2) corresponds to a classical first-order IVP, which

can be numerically solved by standard methods, such as Runge-Kutta. On

the other hand, for q ∈ (0, 1), system (2) becomes an IVP of fractional-order,

presented as fractional differential equation (FDE). In this case, we consider

the fractional derivative operator dq/dtq as being the Caputo’s derivative

with starting point t0 = 0, namely,

dq

dtq
x(t) =

1

Γ(1 − q)

∫ t

0

(
t− s

)−q
x′(s)ds, (3)

where Γ is the Euler gamma function (for basic knowledge on fractional

calculus, one may refer to [20–25]). The use of the Caputo’s approach allows

coupling the FDE with initial conditions in a classical form as in (2) and,

unlike the Riemann–Liouville (RL) definition

RLDq
0x(t) =

1

Γ(1 − q)

d

dt

∫ t

0

(
t− s

)−q
x(s)ds,

it avoids the expression of initial conditions with fractional derivatives. How-

ever, under the assumption that x is absolutely continuous, the Caputo and

RL definitions are related by a relationship involving the initial condition

dq

dtq
x(t) = RLDq

0

(
x(t) − x(0)

)
(4)
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(one can refer to [20] for more insights on this topic and for the extension of

the above definitions and relationship to the case q > 1). Another approach

to introduce derivatives of non–integer order is the Grünwald–Letnikov (GL)

operator

GLDq
0x(t) = lim

N→∞
h−q
N

N∑
k=0

ω
(q)
k x(t− khN ), hN = t/N, (5)

where ω
(q)
k are the coefficients in the power series expansion of (1 − ξ)q =∑∞

k=0 ω
(q)
k ξk and they can be calculated as follows:

ω
(q)
k = (−1)k

(
q

k

)
, with

(
q

k

)
=

Γ(q + 1)

Γ(k + 1)Γ(q − k + 1)
, k = 0, 1, 2, . . . .

The most attractive feature of the GL definition is that it can be used for

practical computation by simply truncating, the summation in (5) to a finite

N . Since under minimal assumptions of continuity RL and GL definitions

coincides [20], the GL discretization scheme can be used, by exploiting (4),

to provide numerical solutions of Caputo–type FDEs (2) in the form of

m∑
k=0

ω
(q)
k

(
xm−k − x0

)
= hqf(xm)

where xm stands for the numerical approximation of x(mh). An explicit

counterpart of the above implicit GL scheme can be obtained by simply

replacing f(xm) with f(xm−1). These are convergent schemes with order 1

for any q > 0 [26, 27].

As will be demonstrated via numerical simulations later, by switching

the parameter p in (2) within some chosen finite set of values, the generated

attractor can well approximate the underlying attractor. Thus, obtaining

and sustaining stable dynamics in a system modeled by (2) can be realized

by choosing some stable cycles of the system corresponding to certain values
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of p, denoted as p∗. The parameter switching (PS) algorithm can then be

designed and applied by obtaining an adequate set of switching values p and

their underlying switching time subintervals, such that their average value

becomes p∗.

Using the PS algorithm can generate many possible dynamics, including

chaotic attractors, from a given system modeled by (2). This attractor syn-

thesis is possible due to the convergence property of the numerical solution,

subjected to the switching of p, to the corresponding solution with the aver-

age value of p (i.e., p∗). A proof of the convergence, based on the averaging

method, can be found in [28].

The PS algorithm has recently been extended to systems of integer-order

and fractional-order, either continuous or discontinuous, with respect to the

state variables. The relevant results have been verified computationally

with phase plots, time series, Poincaré sections, histograms, as well as the

Hausdorff distance [29].

It is worth mentioning that there are many potential applications for the

PS algorithm, for example, to obtain some particular attractors when the

desired value p∗ is not obtainable from the model; to explain the complexity

of some natural phenomena with intrinsic switching modes.

The rest of this paper is organized as follows. In Section 2, the PS

algorithm and its convergence are revisited. Numerical implementation of

the algorithm for both integer-order and fractional-order systems is then

presented in Section 3. In Section 4, the PS is applied as a chaos control

technique to the financial system (1) so as to obtain stable dynamics. Finally,

some conclusions are drawn in the last section.
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2. The Parameter Switching Algorithm

First, the procedure of the PS algorithm [29] is briefly reviewed.

Assuming that the IVP (2) is solved by numerically integrating the sys-

tem on interval I for the given initial x0, the PS algorithm is applied by

switching p periodically within a set of chosen real values PN = {p1, p2, ..., pN}

with N > 1.

Convergence of the PS algorithm

For illustration and completeness, the analytical proof of the convergence

of the PS algorithm is sketched below, for the integer-order case, which was

presented in [28].

Consider the IVP (2) with q = 1 and assume that the standard conditions

(e.g. Lipschitz continuity) for existence and uniqueness of its solution hold.

Then, one has

ẋ(t) = f(x(t)) = g(x(t)) + pAx(t), x(0) = x0, t ∈ I. (6)

where x ∈ R3.

When p is varied periodically based on the PS algorithm, equation (6)

is converted as follows:

ẏ(t) = g(y(t)) + p(t/λ)Ay(t), y(0) = y0, t ∈ I, (7)

where y ∈ R3 and λ is a small positive real number.

Parameter p can be considered as a piecewise constant periodic function

with period T0 and its average value p∗ can be computed by

p∗ =
1

T0

∫ t+T0

t
p(u)du, t ∈ I.
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Consider the average model of (6) with p being replaced with p∗, namely,

ẋ(t) = g(x(t)) + p∗Ax(t), x(0) = x0, t ∈ I. (8)

Based on the averaging theory [30], it is proved in [28] that the solutions of

(7) and (8), starting with same initial conditions x0 = y0, differ by less than

αλ2 for some constant α when λ is sufficiently small.

Numerical Implementation of the PS Algorithm

The simplest way to implement the PS algorithm is to partition interval

I into subintervals of lengths being multiples of h, where h > 0 is the step

size of the numerical method used.

An example is depicted in Figure 1. It is to set p = p1 in the first time

subinterval of length m1h, p = p2 in the next subinterval of length m2h,

and so on, until p = pN in the N -th time interval of length mNh (For the

example in Figure 1, N = 3). The “weights” mi, i = 1, 2, ..., N , are some

positive integers. These N subintervals repeat until the time interval I is

completely covered.

Symbolically, for a fixed h, the switching scheme can be represented by

[m1p1, m2p2, ..., mNpN ]. (9)

For example, [2p1, 1p2] means that, the underlying IVP is integrated with

p being

p1, p1, p2, p1, p1, p2, ...

for each integration step time h.

Notation 1. [29] Let p∗ be the average of the switched values under scheme

(9), which is computed by

p∗ =

∑N
i=1mipi∑N
i=1mi

. (10)
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The obtained solution under the switching scheme (9) approximates the

solution generated with p = p∗.

To implement numerically the PS algorithm for the integer-order finan-

cial systems modeled by the IVP (2), some standard numerical methods

such as Runge-Kutta with fixed step size can be used. In this paper, the

4th-order Runge-Kutta method is used1.

On the other hand, to solve the fractional-order setting, a modified ver-

sion of the Grünwald-Letnikov (GL) discretization scheme is suggested to

apply. This scheme has already been employed in [31] for numerical simu-

lations on the fractional-order Chua systems.

Referring to the financial system (1), the following equations can be

obtained:

xm,1 = x0,1 −
m∑
k=1

ω
(q)
k

(
xm−k,1 − x0,1

)
+ hq

(
xm−1,3 + (xm−1,2 − p)xm−1,1

)
,

xm,2 = x0,2 −
m∑
k=1

ω
(q)
k

(
xm−k,2 − x0,2

)
+ hq

(
1 − bxm−1,2 − x2m,1

)
,

xm,3 = x0,3 −
m∑
k=1

ω
(q)
k

(
xm−k,3 − x0,3

)
+ hq

(
−xm,1 − cxm−1,3

)
,

(11)

where xm,i denotes the i-th component of xm, approximating x(mh).

As shown in (11), the problem can be solved by evaluating each com-

ponent of xm,i one by one sequentially, making the scheme more effective.

Although its convergence rate is of order one, this is a quite typical method

for solving the fractional–order differential equations. It is also worth noting

that some schemes, such as the Adams-Bashforth-Moulton scheme imple-

mented in the Matlab code FDE12 [32], have convergence order of (1 + q).

1Adaptive step-size methods can also be used to implement the PS algorithm.

9



However, their procedures are much more complicated and computationally

expensive and the stability properties are not well established [33].

3. Obtaining and Sustaining Stable and Chaotic Dynamics

Due to the assumed uniqueness condition, to each initial condition x0

belonging to some attraction basin, a unique solution of (2) can be obtained

by the Runge–Kutta or the modified GL scheme, depending on whether (2)

is of integer-order or fractional-order. After neglecting a sufficiently long

transient period of time, the solution approximates a unique attractor on

the considered basin of attraction.

Notation 2. [29] An attractor, as usual for computational purposes, is un-

derstood as the numerical approximation of the solution starting from some

initial condition x0, which characterizes asymptotic dynamics of the systems

with neglected transients.

Now, consider PN = {p1, p2, ..., pN}. Attractors of the set AN = {Ap1 , Ap2 , ..., ApN}

can be obtained, uniquely corresponding to PN . It is natural to consider a

monotonic bijection between PN and AN , which induces the relation order

of PN into AN
2. Therefore, denoting pmin and pmax as the minimum and

maximum values of PN , respectively, the real interval (pmin, pmax) corre-

sponds to the attractor interval (Apmin , Apmax).

Notation 3. [29] Let Ao denote the synthesized attractor obtained with a

switching scheme using the PS algorithm, and A∗ be the average attractor

obtained when p is replaced with p∗.

2The analytical proof of bijection existence represents the subject of a present work.
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Based on the PS algorithm convergence [28] and being verified by over-

plotted phase plots, time series, Poincaré section and the the Hausdorff

distance [29], one can obtain the following property.

Property 4. [29] For a given set PN and weights m1,m2, ...,mN , with N >

1, the synthesized attractor Ao well approximates the average attractor A∗.

Remark 5. i) The value of p∗ given by (10) is a convex combination of

pi, i = 1, 2, ..., N : p∗ =
∑N

i=1 αipi, where αi = mi∑N
i=1 mi

, and
∑N

i=1 αi =

1. Therefore, given PN and weights m1,m2, ...,mN , p∗ belongs inside

the real interval (pmin, pmax). Moreover, due to the mentioned order

and bijection, the same happens for Ao, which falls inside the interval

(Apmin , Apmax). This property essentially indicates a kind of strong

robustness of the PS algorithm to parameter switchings.

ii) For the convexity property of p∗, the PS method can be applied with

scheme (9) not only periodically but also randomly. For example, as-

suming that the designed weight of pi is given by mi for a targeted

average value of p∗, the usage of pi in the model can be chosen with

a probability of mi. Then, with a sufficiently long period of time, one

has

p′∗ =

∑
mi

′
pi∑

mi
′ , (12)

where m
′
i represent the total number of occurrence for each pi and

p′∗ ≈ p∗.

As stated in Property 4, the PS algorithm allows approximating every

attractor of any system modeled by (2). Therefore, the PS algorithm can be

used accordingly as a “chaos control” or “anti-control” technique. Hereafter,

these notions will be discussed.
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The only condition for chaos control (anti-control) is that, between the

chaotic (periodic) windows wherefrom the switched values are chosen, there

exists at least one periodic (chaotic) window. Obviously, control and anti-

control can be realized with mixed switched values for stable and chaotic

dynamics.

As can be easily seen, compared to some other chaos control (or anti-

control) approaches, the PS algorithm acts without changing the original

properties of the synthesized attractor Ao, and this nondestructive technique

could be of great value and importance in practical chaos control (anti-

control) problems.

4. Stable Behaviors of the Financial System

Now, the above-described PS algorithm is applied to the IVP (2) so as to

obtain stable cycles of the system (1) for both integer-order and fractional-

order cases. The parameters b and c in system (1) are set to their nominal

values, i.e., b = 0.1 and c = 1.

For this purpose, the underlying IVP is integrated via the standard

Runge-Kutta method and the modified GL method (11) for the integer-

order and fractional-order cases, respectively. The integration time interval

was I = [0, 400] for the integer-order case, and is larger for the fractional-

order case due to the more complex dynamics of the latter. In both cases,

with few exceptions for the fractional cases, the integration step size was

h = 0.005.

In order to verify the effectiveness of the PS algorithm, and to compare

the attractors Ao and A∗, phase portraits are plotted (red line for Ao and

blue line for A∗) and the Hausdorff distance described in [34, Ch 9, p.114]
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is calculated using the Matlab code [35]. Except a few special cases, the

Hausdorff distance is found to be in the order 10−4.

Integer-order financial system

By plotting out the local maxima, the bifurcation diagram of the integer-

order financial system (system (1) with q = 1) is obtained, as shown in

Figure 2. Here, the focus is on the largest stable window centered at p = 6.5

(see the enlarged view in Figure 2) and some switched values belonging to

the neighboring chaotic windows.

Suppose that one wants to obtain the stable periodic motion (cycle)

corresponding to p∗ = 6.5 based on the switching scheme [m1p1,m2p2] with

p1 = 6 and p2 = 7, both of which exhibit chaotic dynamics (Figure 3 (a)

and (b)). In this case, the weights are set to be m1 = m2 = 1. As shown

in Figure 3 (c), one can obtain the synthesized attractor Ao by the PS

algorithm, showing a stable cycle which well matches with the averaged

attractor A∗ that corresponds to p∗ = 6.5 as given by (10).

It is also possible to change the obtained attractors while the PS algo-

rithm is running on some time interval I. This is demonstrated by applying

more than one scheme (9), as shown by the following example. Assum-

ing that, one first applies the same scheme as before, i.e. [1p1, 1p2], with

p1 = 6 and p2 = 7, it leads to p∗1 = 6.5 and Ao
1. Then, if the scheme is

changed to [1p1, 1p2] with p1 = p∗1 and p2 = 7.38, another stable cycle Ao
2

can be observed, which corresponds to p∗2 = 6.94 (see Figure 2). The phase

plots of Ao
1,2 and A∗

1,2 and the corresponding times series with transients are

shown in Figure 4 (a) and (b), respectively. It well demonstrates that the

PS algorithm can convert a stable cycle into another one.

Same attractor can be obtained by using a different set of PN . For
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example, the PS algorithm with the switching scheme [1p1, 1p2], where p1 =

5 (it presents a chaotic attractor as shown in Figure 5 (a)) and p2 = 8 (it

presents a stable periodic cycle as shown in Figure 5 (b)), gives the same

attractor Ao (Figure 5 (c)) as in the first example above which corresponds

to p∗ = 6.5. Even when p1 and p2 are not both from chaotic windows,

the PS algorithm still works like a chaos control scheme, yielding the stable

attractor Ao.

Another example can be shown by synthesizing the same attractor with

N > 2 switched values. Specifically, consider the scheme [m1p1,m2p2, ...,m9p9]

with P9 = {1, 2, 3, 5, 7, 8, 9, 10, 11} and m1 = m2 = m3 = 1,m4 = m5 =

3,m6 = m7 = m8 = 1,m9 = 2. One again obtains p∗ = 6.5. However,

as shown in Figure 6, Ao and A∗ are not perfectly matched if h = 0.005.

This result can be improved by reducing the integration step size, say to

h = 0.001, and the new result is depicted in Figure 6 (b) for comparison.

As mentioned in Remark 5 ii), the switching scheme in the PS algorithm

can also be implemented in a random way. For instance, consider P2 =

{6.3, 7} and choose the switching order of pi, i ∈ {1, 2}, randomly in every

integration step. Figure 7 depicts the simulation result for I = [0, 400] and

h = 0, 002, which gives p∗ = 6.574... as computed by the relation (12). It

should be noted that a smaller value of h is used here, due to the random

nature of such a switching scheme. As observed from Figure 7, the attractors

Ao and A∗ are similar, though relative large differences are noted at some

points of the attractors. A better matched solution may be found if the

time interval I is increased, such that the right-hand side of (12) can better

approach the value of p∗.

Remark 6. As stated in the previous section, the PS algorithm can also
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be utilized as an chaos anti-control scheme. For example, considering the

switching scheme [1p1, 1p2] with p1 = 6.5 and p2 = 7.2, representing two

stable orbits (see Figure 2, 8 (a) and (b)), respectively, the obtained chaotic

attractor Ao fits the averaged chaotic attractor A∗ with p∗ = 6.85 (Figure 8

c). It is again noted that the attractors are not matched as good as those

in chaos control cases, since chaotic attractors can only be approximated

theoretically after a sufficiently long period of time.

Fractional-order financial system

For the fractional-order setting (system (1) with q ∈ (0, 1)), the modified

GL method (11) is adopted.

Compared with the integer case where chaos exists for q1 + q2 + q3 = 3,

for the fractional variant, as can be seen next, the chaos persists for order

less than 3, and the lowest order is q1 + q2 + q3 = 2.35 [18]. However, the

phenomena observed in integer case, such as period doubling route to chaos,

can also be found for the fractional case.

First, consider the commensurate case with q1 = q2 = q3 = 0.9. The PS

algorithm is applied with P2 = {4.45, 5.45} and the weights m1 = m2 = 1,

thus p∗ = 4.95. Figure 9 depicts the obtained attractors Ao and A∗, showing

a very good matching of these two attractors.

For the incommensurate case, let q1 = q2 = 1 and q3 = 0.9, while using

P2 = {0.5, 0.9} with weights m1 = m2 = 1 in the PS algorithm. One can

verify that p∗ = 0.7. The stable cycles for both switching and averaged cases

are plotted in Figure 10, wherefrom one can easily see that both attractors

match very well.

Similarly, the same cycle can be obtained with other switching schemes,

such as [1p1, 1p2, 1p3, 1p4] with p1 = 0.5, p2 = 0.6, p3 = 0.8 and p4 = 0.9.
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The simulation result is plotted in Figure 11 for reference.

5. Conclusions

It has been shown, albeit numerically, that a stable cycle of the financial

system (1), both integer-order and fractional-order, can be obtained by the

parameter switching (PS) algorithm, starting from any set of switching pa-

rameter values. The algorithm is also good for obtaining chaotic attractor

when a suitable set of switching values is chosen.

The main advantage of the PS algorithm is that it does not affect the

underlying stable or chaotic motions of the considered system. In contrast,

many other chaos control and anticontrol techniques perform perturbations

to the state variables or the parameters of the underlying chaotic system,

thereby the obtained stable or chaotic trajectories are no longer the same

genuine of the original dynamical system. In this sense, the PS algorithm

acts more like as a nondestructive algorithm.

Another advantage of the PS algorithm is that it can provide good ex-

planations to some stable or chaotic motions in nature, which are caused by

some apparently very complicate switching dynamics.

Although without further elaboration, the modified GL scheme (11) uti-

lized in this paper appears to be suitable for the problem in interest. Due

to a suitable formulation of the solutions obtained by the GL method, se-

quential computation with reasonable effort becomes realistic. However, the

properties of this method deserves further investigation, which is beyond the

scope of the present paper but will be carried out in the near future.
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Figure 1: PS algorithm (sketch).
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Figure 2: Bifurcation diagram of system (1) for integer case. Local maxima of x1 are

plotted.
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Figure 3: Stable cycle for the integer-order case, corresponding to p∗ = 6.5 and obtained

with the scheme [1p1, 1p2] with p1 = 6 and p2 = 7. a), b) The chaotic attractors corre-

sponding to p1,2; c) The attractors Ao and A∗ over-plotted.
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Figure 4: PS algorithm applied consecutively with schemes [1p1, 1p2] with p1 = 6, p2 = 7

for t ∈ [0, 700] which gives p∗1 = 6.5 and then with p1 = p∗1 and p2 = 7.38 which gives

p∗2 = 6.94 for t ∈ [700, 1400]. The attractors Ao
2 and A∗

2 have been translated for a better

view. a) Phase plots of Ao
1, A

∗
1 and Ao

2, A
∗
2 respectively; b) Time series.
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Figure 5: Stable cycle for the integer-order case, corresponding to p∗ = 6.5 and obtained

with the scheme [1p1, 1p2] with p1 = 5 and p2 = 8. a), b) The chaotic attractors corre-

sponding to p1,2; c) The attractors Ao and A∗ over-plotted.
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Figure 6: Stable cycle for the integer-order case, corresponding to p∗ = 6.5

and obtained with the scheme [1p1, 1p2, 1p3, 3p4, 3p5, 1p6, 1p7, 1p8, 2p9] with P9 =

{1, 2, 3, 5, 7, 8, 9, 10, 11} (surrounding attractors). a) Ao and A∗ obtained with h = 0.005;

b) Ao and A∗ obtained with h = 0.001.
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Figure 7: Random PS applied to the values P2 = {6.3, 7} for the integer case, with

switching order chosen randomly. The obtained p∗ calculated with (12), Remark 5 ii), is

p∗ = 6.574....
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Figure 8: Anti-control of the integer-order financial system obtained with the scheme

[1p1, 1p2] with p1 = 6.5 and p2 = 7.2. a), b) The cycles corresponding to p1 and p2

respectively. c) The synthesized attractor Ao and the average attractor A∗.
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Figure 9: Stable cycle for the fractional-order commensurate case q1 = q2 = q3 = 0.9,

corresponding to p∗ = 4.95 and obtained with the scheme [1p1, 1p2] with p1 = 4.45 and

p2 = 5.45. a), b) The chaotic attractors corresponding to p1,2; c) The attractors Ao and

A∗ over-plotted.
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Figure 10: Stable cycle for the non-commensurate case q1 = q2 = 1 and q3 = 0.9 and

corresponding to p∗ = 0.7 obtained with the scheme [1p1, 1p2] with p1 = 0.5 and p2 = 0.9;

a) Top: Attractors corresponding to the switched values p1 = 0.5 and p2 = 0.9; b) Bottom:

The attractors Ao and A∗.
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Figure 11: Stable cycle for the non-commensurate case q1 = q2 = 1 and q3 = 0.9 and

corresponding to p∗ = 0.7 obtained with the scheme [1p1, 1p2, 1p3, 1p4] with p1 = 0.5, p2 =

0.6, p3 = 0.8 and p4 = 0.9; a) Top: Attractors corresponding to the switched values

p1 = 0.5, p2 = 0.6, p3 = 0.8 and p3 = 0.9; b) Bottom: The attractors Ao and A∗.
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