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Abstract

In this paper we prove numerically, via computer graphic simulations, that switching the control
parameter of a dynamical system belonging to a class of dissipative continuous dynamical systems, one
can obtain a stable attractor. In this purpose, while a �xed step-size numerical method approximates
the solution to the mathematical model, the parameter control is switched every few integration steps,
the switching scheme being time periodic. The switch is made inside of a considered set of admissible
parameter values. Moreover we show that the obtained synthesized attractor belongs to the class of all
admissible attractors for the considered system and matches to the averaged attractor obtained for the
control parameter replaced with the averaged switched parameter values. The synthesis algorithm may
force the system to evolve along on a stable attractor whatever the parameter values are switched and
introduces a convex structure inside of the attractor set via a bijection between the set of parameter
control values and the attractors set. The synthesis algorithm beside his utility in systems stabilization,
when some desired parameter control cannot be directly accessed, may serve as model for the dynamics
encountered in reality or experiments e.g. three-species food chain models, electronic circuits etc. This
method compared to the OGY algorithm, where only small perturbations of parameter control can be
issued, allows relatively large parameter perturbations.

The present work extends the results obtained by us previously and is applied to Lorenz, R½ossler
and Chen systems.

keywords: stable attractors, chaotic attractors, dissipative dynamical systems

Mathematics Subject Classi�cation: 37C50, 37D45

1 Introduction

Until recently, the preferred approach to chaotic dynamical systems has been to avoid them. In recent
years one of the main goals of nonlinear science is to deal with chaos and to prevent it. A number of
chaos control algorithms have been proposed and the aspects of controlling chaos have been investigated
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the most known method, OGY, being developed by Ott, Grebogi, and Yorke [1] which takes advantage
of the sensitivity to initial conditions, and other characteristics of chaotic systems, to produce periodic
behavior from chaotic behavior. As it is known, unstable periodic orbits of nonlinear dynamical system
that possesses a chaotic attractor, are typically dense. Thus, there exists a large number of periods and the
system can be stabilized in many di¤erent hyperbolic periodic orbits. Ott, Grebogi and Yorke have shown

that chaotic systems may he controlled by making only small changes in an accessible control parameter.
Thus, once the control parameters have been calculated it is necessary to wait for the system to enter a
region of state space, then to issue small modi�cations to the control parameter to ensure that the system
will come back to the same controllable region.
If the control methods pay careful attention to the (generally small) control parameter changes, non-

trivial questions arise: what happens if, during the system evolution, the control parameter is simply
switched between few values in a time deterministic or even random manner? Does his qualitative chaotic
or stable structure change? If for the considered control parameter values the system evolves chaotic,
can these switches stabilize the system, or reversely, if the system is stable for the considered values, the
parameter switches could enhance chaos?
The �rst answers to these questions was given in [2] the present paper having the goal to extend the

study of this algorithm (the synthesis algorithm). Thus, while in [2] we presented a general parameter
switching scheme to synthesize attractors (stable or chaotic), in this paper we prove, via numerical experi-
ments, that switching in a time deterministic manner the control parameter, a system belonging to a class
of dissipative systems may be forced to evolve along any desired stable periodic attractor whatever the
considered number of parameters chosen to be switched is considered and whatever the original behavior
was: stable or chaotic.
The counter arguments to the argument that this "control" technique would be useless since we can

directly set the system to be stable by choosing an appropriate parameter value, are the following: from a
practical design point of view, it is sometimes di¢ cult or even impossible to generate a speci�c attractor
by a particular parametric value on a physical device, also especially in natural systems, deterministic (or
even random) time switches of the control parameter may natural happen and have a realistic meaning in
e.g. ecological systems and circuitry.
Compared to the existing family of OGY methods which require detailed calculations, while the at-

tractor is generated via discrete perturbations applied to the control parameter, the synthesis algorithm
implies only a priori parameter switching scheme.

Remark 1 While all the known control methods work on unstable attractors, the synthesis algorithm
cannot be considered as a typical control or stabilization algorithm -which stabilize a periodic unstable
orbit- since if before to start the algorithm the system can evolve stable and then the algorithm just change
the behavior from a stable attractor to another one. Therefore this algorithm could be viewed as a kind
of "general stabilization" because either the system evolves initially stable or chaotic, the algorithm may
"switch" this behavior to another one. Also the synthesis algorithm can be use to chaotify [2], [3] and may
explain why in real systems chaos appear.

The class of chaotic systems considered here can be represented by a continuous-time autonomous
dissipative model depending linearly on a single real bifurcation parameter, expressed in the general form
of the following Initial Value Problem:

S : _x = fp(x); x(0) = x0; (1)
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where fp is an Rn-valued function with a bifurcation parameter p 2 R and n � 3, and has the expression

fp(x) =g(x) + pAx; (2)

in which g : Rn �! Rn is a continuous-time nonlinear function, A is a real constant n�n matrix, x0 2 Rn,
and t 2 I = [0;1):
The aims of this paper is to prove numerically, via computer graphic simulations, that the synthesis

algorithm can determine the system S to evolve along a stable (limit-cycle) attractor, whatever the initial
behavior was and, to verify that the obtained attractor belongs to the set of all admissible attractors of S:
This class of dynamical systems is enough large containing known systems such as Lorenz, R½ossler,

Chen.
Throughout, the existence and uniqueness of solutions are assumed, and it is supposed that there exist

only hyperbolic equilibria.
Despite the fact that there are di¤erences between computation and theory, nonetheless, the numerical

integration of (1)-(2) via computer graphic simulations can give excellent approximations to the orbits
within the invariant sets [4]. Also, the orbits that start near a hyperbolic attractor will stay near and they
will be shadowed by orbits within the attractor because attractors arise as the limiting behavior of orbits.
Therefore, the shadowing property of hyperbolic sets [5] enables us to recover long time approximation
properties of numerical orbits.
The algorithm presented in this paper consists in use a time varying, or more preciously, periodically

switching parameter, according to some design rule. It will be demonstrated, empirically by various
experiments, that a desired attractor can be duly obtained by the proposed switching scheme.
The organization of the paper is as follows. Section 2 presents the synthesis algorithm, while in Section

3 the algorithm is applied to obtain a desirable stable orbit. Three examples are considered.

2 Switching scheme

Notation 2 Let A be the set of all global attractors [6] depending on parameter p, including attractive
stable �xed points, limit cycles and chaotic (possibly strange) attractors; P �R be the set of the corre-
sponding admissible values of p and PN = fp1; p2; : : : ; pNg � P a �nite ordered subset of P containing N
di¤erent values of p, which determines the set of attractors AN = fAp1 ; Ap2 ; : : : ; ApN g � A.

The assumption that we can access all the values of PN = fp1; p2; : : : ; pNg for which the system is
stable and/or chaotic is assumed to held.
Due to the assumed dissipativity, A is non-empty and it follows naturally that for the considered class

of systems, a bijection may be de�ned between the sets P and A. Thus, giving any p 2 P, a unique global
attractor is speci�ed, and vice versa.

Remark 3 Di¤erent orbits may have di¤erent attractors. Also it is a particularly, not uncommon, situ-
ation when the attractor is the same for all orbits. Because in this paper, computer simulations are used
as the major analytical tool, the !-limit set (actually, its approximation [7]) is considered after neglecting
a su¢ ciently long period of transients. In other words, by attractors (background on attractor notion can
be found in [8]) it is suitable to understand here the !-limit set obtained by a numerical method for ODEs
with �xed step size h after the transients were neglected.
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Choosing a �nite subset PN = fp1; p2; : : : ; pNg the deterministic synthesis algorithm relies on the

following deterministic time switching rule which is applied inde�nitely

[(m1h)p'(1); (m2h)p'(2); : : : ; (mNh) p'(N)]; (3)

where the weights mi are some positive integers and ' permutes the subset f1; 2; : : : ; Ng: The algorithm
acts as follow: for the �rst time subinterval of length m1h, p will have the value p'(1), for the next m2

integration steps, p = p'(2) (Figure 1) and so on until the N -th time subinterval of length mNh where
p = p

'(N)
then the algorithm repeats. Thus, the relation (3) is (m1 +m2 + ::: +mN )h periodic because

it repeats (3) in each successive time intervals
��

NP
k=1

mkh

�
i;

�
NP
k=1

mkh

�
(i+ 1)

�
i=0;1;2;:::

. In order to

simplify the notation, for a �xed step size h, the scheme (3) will be denoted

[m1p'(1); m2p'(2); : : : ;mN p'(N)]: (4)

For example the scheme [2p3; 3p1; 1p2] represents the in�nite sequence of p : 2p3; 3p1; 1p2; 2p3; 3p1; 1p2; : : : which
means that while the considered numerical method integrates (1)-(2), p switches in each mih time subin-
terval.
The synthesized attractor will be denoted hereafter A�: To prove that A� 2 A we prove that A� is

identical to the averaged attractor denoted Ap� with

p� =

NP
k=1

p'(k)mk

NP
k=1

mk

: (5)

If we denote �k = mk=
NP
k=1

mk it is easy to see that p� is a convex combination p� =
NP
k=1

�kp'(k); since

NP
k=1

�k = 1: Therefore p� 2 (p1; : : : ; pN ), whatever the values pi are chosen.

Also, taking into account the bijection between P and A, we are entitled to consider that the same
convex structure is preserved into A: Therefore for whatever switched values of p in some subset PN , the
synthesized attractor A� will belong inside the ordered set AN , with the order induced by the mentioned
bijection.

Remark 4 i) The initial conditions play an important role since for a speci�c value p 2 P there is a
single global attractor but which could be composed by several local attractors. For example for the Lorenz
system for p = 2:5 there are three local attractors: the origin (saddle) and two symmetrical �xed points
(sinks) X1; 2� 2;�2; 1:5). Also In some cases, the unique local attractor may also be the global one (e.g.
for p = 28, there exists only a single local attractor, which is a global attractor too, the Lorenz strange
attractor). Therefore, the computer simulations for A� and Ap� are considered from the same initial
conditions. This choice is obvious because of the possible coexistence of several attraction basins when the
global attractor contains several local attractors.
ii) The size of the integration step h is an important parameter which may in�uence the results due the
convergence properties of the considered method for ODEs. Obviously, both attractors A� and Ap� are
simulated with the same �xed step size.
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Let us consider the case of Lorenz system

�
x1 = a(x2 � x1);
�
x2 = x1(p� x3)� x2;
�
x3 = x1x2 � cx3;

; (6)

with the known parameters setting a = 10 and c = 8=3, p being the control parameter.
Using the scheme [2p1; 3p2; 2p3; 4p4; 3p5] with p1 = 125, p2 = 130; p3 = 140, p4 = 144, p5 = 220;
'(i) = i; i 2 f1; : : : 5g; the synthesis attractor A� is depicted in Figure 2(a). In Figure 2(b) A� and the
averaged attractor Ap� with p� given by (5) p� = (2p1 + 3p2 + 2p3 + 4p4 + 3p5) = (2 + 3 + 2 + 4 + 3) = 154
are overplotted. The histogram (Figure 2(c)) underlines this identity1 . To better understand the way in
which the algorithm behaves, the bifurcation diagram of the maximum state variable x1 is referred (Figure
3) wherefrom it may be noticed that despite the fact that only one attractor, Ap5 ; is stable and the other
four are chaotic, the obtained attractor A� is stable. Actually, this could happen even if all considered
attractors are chaotic or, reversely, choosing all attractors stable, function of the weightsm; the synthesized
attractor A� may be chaotic. This property, resulted from convexity property, may be noted in above
example if instead p5 = 220, we chose p5 = 166 (Figure 4) when the synthesized attractor A� is chaotic
and is identical to the averaged attractor Ap� with p� = 142:428; In Figure 5, A�; Ap�are plotted beside
histogram and Poincaré section (with the plane x3 = 135) which underline the matching between the two
attractors. Thus, for a dynamical system modeled by (1)-(2) using the switching scheme (4) whatever
is PN , for proper choice of the weights m the synthesized attractor A� always belongs to A. To relative
large values for m or large N correspond larger di¤erences between the two attractors A� and Ap� (see
the detail in Figure 12(c)). However A� still remains inside of an acceptable small neighborhood of Ap� :
The synthesis algorithm with the scheme (4) is depicted in Figure 6

Input : N; Tmax; h; m1; : : : ;mN ; p'(1) ; : : : p'(N)

repeat
p = p

'(1)

for i = 1 to m1 do
integrate (1)� (2)
t = t+ h

end
...
p = p

'(N)

for i = 1 to mN do
integrate (1)� (2)
t = t+ h

end
until t � Tmax

Figure 6

1This identity for the chaotic attractors case can be considered only "asymptotic", since they are fully depicted only after
an in�nity time. This relative di¤erence between the two attractors, A� and Ap� ; can be remarked in Figure 3 (more details
on identitity notion may be found in [2])
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To support the identity between A� and Ap� which shows the fact that A� is an attractor belonging

to A, histograms and Poincaré sections besides the phase plots were drawn after the transients were
neglected. Also the Haussdorf distance between the two trajectories was calculated (see Appendix)

3 Synthesized stable attractors

Let us consider the system modeled by (1)-(2) and the sets PN and AN . Suppose that for some objective
reasons certain targeted value(s) of bp =2 PN -for which the system behaves stable- cannot be accessible.
Then, using the bifurcation diagram it is possible to synthesize a stable orbit corresponding to bp using the
synthesis algorithm with the values of PN : The only su¢ cient (and necessary too [2]) condition on bp is that
it belongs to the inside of the real closed interval [p1; : : : ; pN ] (because of convexity property, bp cannot be
chosen outside of [p1; : : : ; pN ]):To synthesize the attractor Abp, we must choose m: Having p1; : : : ; pN �xed,
the equation (5) for p� = bp with the unknown m has to be solved. Then, with the obtained values for m,
the scheme (4) is applied. The synthesized attractor A� is identical, as shown above, to Abp. Thus using
the synthesizes algorithm one can force the system to evolve on the desired stable orbit corresponding tobp:
Also the following situation is possible: PN is not set a priori. Then, both unknowns, m and the set

PN ; have to be determined such (5) to be veri�ed with the only known bp. Obvious, the solutions are not
unique in both situations because the elements of PN belong in a compulsory way to one of the in�nite
number of p-intervals which compose P.
For example, suppose that we want to synthesize, with the scheme [m1p2;m2p1]; a stable orbit for

the Lorenz system corresponding to bp = 160 (see the bifurcation diagram in Figure 3) starting from
PN = f100; 190g Then a solution to (5) is m1 = 2 and m2 = 1:

Remark 5 i) The switching scheme may be applied even in a random way to stabilize or chaoticize the
behavior of a system modeled by (1)-(2). Thus, starting from PN , whatever values for m are taken and
for a random path in (3), because of the convexity, p� will belongs to the open interval (p1; : : : ; pN ) [3].
ii) This algorithm may serve in some cases as explanation of stabilization/chaoticisation of a real system,
where accidentally the parameter are switched in a deterministic or random way.
iii) The strategy to choose the best scheme (4) depends on the given system and especially on the accessible
values for p.

Examples

The algorithm is applied next to generate stable periodic attractors of three known systems: Lorenz
system, Chen system

_x1 = a(x2 � x1);
_x2 = (p� a)x1 � x1x3 + px2;
_x3 = x1x2 � bx3;

with a = 35 and b = 3; and Rössler system

�
x1 = �x2 � x3;
�
x2 = x1 + ax2;
�
x3 = b+ x3(x1 � p);

6
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with a = b = 0:1: Everywhere p is considered as control parameter.
Computational graphics tools such as three dimensional phase portraits and histograms for x1 were

plotted. In order to check the di¤erence between the orbits of A� and ApN Hausdor¤ distance dH was
calculated (see Appendix) the highest value being obtained for Rössler system due to the sensitivity of the
computed results to the integration time steps as pointed out in [9]. For all considered cases dH(A�; ApN )
is of order of 10�3 � 10�2 which represents a good identity between the orbits. The numerical method
to integrate (1)-(2) was the standard Runge-Kutta with the step size h = 10�4 � 10�2 function of the
integrated system.
For the sake of simplicity only the cases N = 2; 3 are presented. The results are depicted in Table 1.

System Scheme p1 p2 p3 p� Graphical results
Lorenz [1p1; 2p2] 81:5 98 � 92:5 Figure 7

[2p1; 3p2; 3p3] 125 140 175 149:375 Figure 8
Chen [1p1; 1p2] 25:916 26:25 � 26:083 Figure 9

[7p1; 3p2; 4p3] 23 24 32 25:7857 Figure 10
R�ossler [2p1; 1p2] 6 12:3 � 8:1 Figure 11

[2p1; 5p2; 3p3] 18 25 31 25:4 Figure 12

Table 1

Better synthesis results are observed in Chen and Lorenz systems, while some small derivation is
noticed in the case of the Rössler system because of the above mentioned sensitivity.

4 Conclusions and further directions

In this paper we proved numerically that while a numerical method solves the system modeled by (1)-(2)
we switch periodically the control parameter following a determinist rule, the orbit can be forced to reach
a desired stable attractor. The control parameter is switched inside a �nite subset PN of the set of all
admissible values P; every �nite time subintervals. The synthesized stable attractor are identical to an
attractor, belonging to the set of all attractors A; which corresponds to the averaged value of the switched
values of PN :
Further mathematical studies on this algorithm remain a task for future works such as the convergency

of the synthesized attractor to the averaged attractor, the study of the step size in�uence and so on.
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Appendix
The Hausdor¤ distance in a metric space, or Hausdor¤ metric, measures how far two compact non-empty

subsets of the considered metric space are from each other.
The classical (symmetrical) Hausdor¤ distance between two (�nite) sets of points, A and B, is de�ned as ([10])

dH(A;B) = max

�
sup
x2A

inf
y2B

d(x; y); sup
y2B

inf
x2A

d(x; y)

�
:

The Hausdor¤ distance between two curves is de�ned as the maximum distance to the closest point between
two curves. If the curves are de�ned as the sets of ordered pair of coordinates A = fa1; a2; : : : ; ang; B =
fb1; b2; : : : ; bmg; then the distance to the closest point between a point ai to the set B is

d(ai; B) = min
j
kbj � aik :

Thus, the Hausdor¤ distance is

dH (A;B) = max

�
max
i
fd(ai; B)g;max

j
fd(bj ; A)g

�
:
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Figure Captions
Figure 1: Time parameter partition (sketch)
Figure 2: The synthesize algorithm applied for Lorenz system with the scheme [2p1; 3p2; 2p3; 4p4; 3p5]

with p1 = 125, p2 = 130; p3 = 140, p4 = 144, p5 = 220; a) The synthesized attractor A� b) the averaged
attractor Ap� with p� = 154;c) Histogram.
Figure 3: The bifurcation diagram for Lorenz system illustrating the scheme [2p1; 3p2; 2p3; 4p4; 3p5] with

p values as in Figure 2
Figure 4: The bifurcation diagram for Lorenz system illustrating the scheme [2p1; 3p2; 2p3; 4p4; 3p5] with

p values as in Figure 2 except p5 = 166:
Figure 5: The synthesize algorithm applied for Lorenz system with the scheme [2p1; 3p2; 2p3; 4p4; 3p5]

with p1 = 125, p2 = 130; p3 = 140, p4 = 144, p5 = 220; a) The synthesized attractor A� b) the averaged
attractor Ap� with p� = 154;c) Histogram; d) Poincaré section with the plane x3 = 135:
Figure 7: The synthesize algorithm applied for Lorenz system with the scheme [1p1; 2p2] with p1 =

81:5, p2 = 98; a-b) Attractors Ap1 and Ap2 ; c) A
� and Ap� overplotted with p� = 92:5; c) Histogram;

Figure 8: The synthesize algorithm applied for Lorenz system with the scheme [2p1; 3p2; 3p3] with
p1 = 125, p2 = 140 and p3 = 175; a-c) Attractors Ap1 ; Ap2 and Ap3 ; d) A

� and Ap� overplotted with
p� = 149:375; e) Histogram;
Figure 9: The synthesize algorithm applied for Chen system with the scheme [1p1; 1p2] with p1 =

25:916, and p2 = 26:25; a-b) Attractors Ap1 and Ap2 ; c) A
� and Ap� overplotted with p� = 26:083; d)

Histogram;
Figure 10: The synthesize algorithm applied for Chen system with the scheme [7p1; 3p2; 4p3] with

p1 = 6, p2 = 24 and p3 = 32; a-c) Attractors Ap1and Ap2 ; d) A
� and Ap� overplotted with p� = 25:7857;

e) Histogram;
Figure 11: The synthesize algorithm applied for Rössler system with the scheme [2p1; 1p2] with p1 =

125, and p2 = 12:3; a-b) Attractors Ap1 and Ap3 ; c) A
� and Ap� overplotted with p� = 8:1; d) Histogram;

Figure 12: The synthesize algorithm applied for Rössler system with the scheme [2p1; 5p2; 3p3] with
p1 = 18, p2 = 25 and p3 = 31; a-c) Attractors Ap1and Ap2 ; d) A

� and Ap� overplotted with p� = 25:4;
e) Histogram;
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