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Abstract

In this paper the dynamics of an autonomous mathematical model of COVID-19 depending
on a real bifurcation parameter, is controlled by the Parameter Switching (PS) algorithm.
With this technique, it is proved that every attractor of the considered system can be nu-
merically approximated and, therefore, the system can be determined to evolve along, e.g.,
a stable periodic motion or a chaotic attractor. In this way, the algorithm can be considered
as a chaos control or anticontrol (chaoticization) algorithm. Contrarily to existing chaos
control techniques which generate modified attractors, the obtained attractors with the PS
algorithm belong to the set of the system attractors. It is analytically shown that using the
PS algorithm, every system attractor can be expressed as a convex combination of some
existing attractors. Interestingly, the PS algorithm can be viewed as a generalization of
Parrondo’s paradox.

Keywords: Parameter switching algorithm; Numerical attractor; COVID-19
mathematical model

1. Introduction

For a general nonlinear dynamical system, it is impossible to determine analytically its
complex attractors such as invariant manifolds, attraction basins, heteroclinic and homo-
clinic orbits, Smale horseshoes, chaotic attractors, which usually rely on numerical analysis.
Under Lipschitz conditions, numerical methods for continuous-time dynamical systems,
such as Runge-Kutta methods, lead to solving discrete dynamical systems. A compari-
son of the asymptotic behavior of the underlying dynamical system with the asymptotic
behavior of its numerical discretization obtained with a convergent numerical scheme for
ODEs is given in [3, 4]. The obtained numerical approximations represent an important
and natural part of a systematic analysis. Thus, if one considers an attractor A of the
considered dynamical system, the discrete dynamical system generated by a convergent
numerical method should also have an attractor that converges to A [5] (see also [6]).

As an important and natural part of a systematic analysis, numerical approximations
of attractors are considered in this paper. Therefore, the resulting attractor is understood



here as being the numerical attractor, obtained with some convergent numerical method
(see e.g. [7, 3]), after transients are neglected.

On the other hand, classical studies of mathematical models used to explain disease
processes such as in [8, 9], after the arrival of COVID-19 at the end of December 2019,
many works on this pandemic have been published (see e.g. [10, 11, 12] and references
therein).

The concern of the harms produced by the COVID-19 increased the interest of assessing
the epidemic tendency. Based on two official datasets, the National Health Commission of
the Peoples Republic of China [13] and the Johns Hudson University [14], a novel mathe-
matical model of the COVID-19 pandemic is proposed by Mangiarotti et al. in [14] which is
considered in this paper (see also [15, 45, 46], where fractional-order models of COVID-19
pandemic and problems of control and anticontrol of chaos are considered).

A variant of the model presented in [14] is described by the following Initial Value
problem (IVP)

·
x1(t) = −0.1053x23(t) + 2.3430× 10−5x21(t) + 0.1521x2(t)x3(t)− 0.0018x1(t)x2(t),
·
x2(t) = 0.1606x23(t) + 0.4404071x2(t)− 0.2052x1(t),
·
x3(t) = 0.2845x3(t)− 0.0001x1(t)x3(t)− 1.2155× 10−5x1(t)x2(t) + 2.3788× 10−6x21(t),

x1(0) = x10, x2(0) = x20, x3(0) = x30,

,

(1)
where x1 represents the daily number of new cases, x3 represents the daily number of new
deaths, x2 represents the daily additional severe cases, and p is a positive parameter. The
significance of the bold coefficients will be explained in Section 3.

The analysis presented in [14] shows that a global modelling approach could be useful
for decision makers to monitor the efficiency of control measures and to foresee the extent
of the outbreak at various scales, which also shows that the system could be used to adapt
more classical modelling approaches to ensure mitigation and, hopefully, eradication of the
disease.

Among the many existing models of integer and fractional-order of COVID-19 pan-
demic, in this paper an integer-order variant is used so that the inherent problems related
to the nonexistence of periodic motion in fractional-order models [47] is avoided.

In this paper we show both analytically and numerically, via the PS algorithm in-
troduced in [16], that the COVID-19 outbreak behavior can be controlled by switching
periodically some of the system parameters. In [16] it is shown numerically that many
known systems can be controlled in the following sense: switching p within a given set of
values, in some deterministic (or even random [17]) manner while the underlying IVP is
numerically integrated, one can approximate some desired attractor with sufficiently small
errors. Moreover, the algorithm is useful e.g. when one intends to obtain a particular evo-
lution but, for some reason, the parameter corresponding to that evolution cannot be set.
Considering for example the case of the COVID-19 pandemic model (1), once the evolution
versus p is previously known (e.g. from previous pandemic), one can “force” the system to
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evolve along some desired (periodic) attractor which corresponds to an inaccessible param-
eter value p0 in the model. It needs to have a set of at least two parameters whose average
value is p0. By switching p within the parameters set, one obtains an approximation of the
periodic attractor. Also, the PS algorithm can be used to explain why, in some natural
systems, alternations between different dynamics could lead to unexpected behavior. The
convergence of the PS method is proved in [1] (see [18, 19] for other approaches). In [20]
it is analytically and also numerically proved that is possible to express any numerical
attractor of a given dynamical system as a convex combination of some other existing at-
tractors via the PS algorithm. The algorithm can be used both for theoretical studies of
dynamical systems regarding such as synchronization [21], chaos control and anticontrol,
as generalization of the Parrondo paradox (see e.g. [22, 23]), which can also experimentally
implemented on real systems, e.g., electronic circuits [24].

In 1998 at the receipt of the Steele Prize for Seminal Contributions to Research, Zeil-
berger said that “combining different and sometimes opposite approaches and view-points
will lead to revolutions. So the moral is: Don't look down on any activity as inferior,
because two ugly parents can have beautiful children”. This paradox can be symbolically
written as “losing + losing = winning” or, in the present study, “chaos+chaos=order” or
”order+order=chaos”. The PS algorithm allows to implement this paradoxical game to a
large class of dynamical systems which includes the Lorenz system, Chen system, Roessler
system, etc., to obtain chaos control-like or anticontrol-like (chaoticization) effects. For
Parrondo’s paradox see [25, 26, 27], and references therein.

In this paper, using the PS algorithm, it is shown that unwanted chaotic or regular
behaviors of system (1) can be controlled in the sense that the system can be determined
to evolve along some desired regular or chaotic trajectory, respectively. Moreover, based on
the attractor decomposition result in [20], every attractor of system (1) can be decomposed
as a combination of other attractors.

2. Parameter Switching algorithm

In this section, the main properties of the PS algorithm are briefly presented (details
can be found e.g. in [20]).

Many single-parameter chaotic dynamical systems, such as the Lorenz system, Rössler
system, Chen system, Lotka–Volterra system, Hindmarsh-Rose system, etc. can be mod-
eled as the following IVP

ẋ(t) = f(x(t)) := g(x(t)) + pBx(t), x(0) = x0, (2)

where t ∈ I = [0, T ], x = (x1, x2, ..., xn)
t, x0 ∈ Rn, p ∈ R is the bifurcation parameter,

B ∈ Rn×n a constant matrix, and g : Rn → Rn a continuous nonlinear function.
Because of the autonomous nature of systems (2), for simplicity, hereafter the time

variable t will be dropped.
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An example of dynamical systems modeled by the IVP (2) is the Lorenz system

·
x1 = σ(x2 − x1),
·
x2 = x1(ρ− x3)− x2,
·
x3 = x1x2 − βx3,

where n = 3 with a = 10 and c = 8/3. If one considers p = ρ (parameters σ and β can also
be p) then

g(x) =

 σ(x2 − x1)
−x1x3 − x2
x1x2 − βx3

 , B =

 0 0 0
1 0 0
0 0 0

 .

Consider the following assumptions

H1 Function f in (2) is Lipschitz continuous.

H2 To integrate system (2), an explicit single h step-size convergent numerical method
is used.

Under H1, with an admissible initial condition x0 for any p, the IVP (2) admits a
unique and bounded solution.

Using methods assumed in H2 is necessary only to explain the evolution of the PS
algorithm. In this paper the utilized numerical method is the Standard Runge-Kutta
(RK4).

Consider a dynamical system modeled by the IVP (2). Denote a set of N > 1 parameter
values of p by PN = {p1, p2, ..., pN}, pi ∈ R, i = 1, 2, ..., N . The numerical method is used
for solving the IVP (2) on the discrete time nodes nh, n = 1, 2, ..., of the discretized interval
I.

Because of the solution uniqueness ensured by the Lipschitz continuity, one can supose
that to each parameter pi ∈ PN , i ∈ {1, 2, ..., N}, there corresponds a unique attractor Ai.
Denote AN = {A1, A2, ..., AN} the set of the underlying attractors. Also, consider the set
PN ordered: p1 < p2 < ... < pN [20] (Fig.1).

With the above ingredients by switching p within the set PN according to a certain
periodic rule while the IVP (2) is numerically integrated with the RK4 method, the PS
algorithm allows the approximation of any attractor of system (2).

Suppose one intends to generate some attractor, denoted Ao, corresponding to the value
p := p0 which, for some reasons, cannot be generated by integrating the IVP with this value
of p (a situation often encountered in real dynamical systems).

The first step is to choose a set PN such that the two ends of the ordered set, p1 and
pN , verify the relation (see Fig. 1)

p1 < p0 < pN . (3)
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For a given step-size h > 0, the PS algorithm can be symbolized with the following
scheme:

S := [m1 ◦ p1,m2 ◦ p2, ...,mN ◦ pN ]h, (4)

where MN = {m1,m2, ...,mN}, mi ∈ N∗, i = 1, 2, ..., N , denotes the “weights” of pi values.
The term mi ◦ pi indicates the number of mi times for which the parameter p will take the
value pi, for i ∈ {1, 2, ..., N} while the IVP is integrated. Therefore, scheme (4) reads as
follows: while the IVP (2) with initial condition x0 is numerically integrated with the fixed
step-size method, for the first m1 integration steps, at the nodes nh, n = 1, 2, ...,m1, p will
take the value p1; for the next m2 steps (at the nodes nh with n = m1 +1,m1 +2, ...,m2),
p = p2; and so on till the last mN steps, where p = pN . Next, the algorithm repeats
and begins with p = p1 for m1 times, and so on until the entire time integration interval
I is covered by the numerical integration. Therefore, the switching period of p, which is
piece-wise constant function, is

∑N
i=1mih.

For simplicity, hereafter the index h in (4) is dropped.

For example the scheme S = [3 ◦ p1, 2 ◦ p2] indicates that the PS algorithm acts as
follows: the integration over the first 3 consecutive steps, p will take the value p1, next, for
the 2 consecutive steps p will take the value p2, after which the processus repeats.

Denote the solution obtained with the PS method, starting from the initial condition
y0, by yn, and call it the switched solution, and the solution, xn, from the initial condition
x0, obtained by integrating the IVP (2) with p := p0, where [20]

p0 =

∑N
i=1mipi∑N
i=1mi

, (5)

the averaged solution. Also, the attractor corresponding to p0, denoted A0, is called the
averaged attractor, while the attractor obtained with the PS algorithm, denoted A∗, is
called the switched attractor.

In [1, 19, 18] it is proved that the attractor A0 is approximated by the switched attractor
A∗ generated by the PS method, denoted A∗ ≈ A0 and in [16] the match between A∗ and
A0 is verified numerically by time series, histograms, Poincaré sections and Haussdorff
distance.

Remark 1. For a given N , the scheme (4) is usually not unique: there are several sets
MN and PN which generate the same value of p0 via formula (5).

Corollary 1.
i) For each given set, PN and MN , A∗ ≈ A0, with p0 given by (5);

ii) For each attractor A of the considered system (2), there exists a set PN , such that
p1 < p0 < pN , and a set of weights MN , N > 1, such that A can be approximated by
the PS method.
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Proof. See Appendix A for a sketch of the proof.

Denote

αj := mj/
N∑
i=1

mi, j = 1, 2, ..., N. (6)

Since
∑N

i=1 αi = 1, it is easy to see that p0 is a convex combination of pi, i = 1, 2, 3, ..., N ,

p0 =
∑N

i=1 αipi.
In [20] it is proved that the set A can be endowed with two binary relations (operators)

(A,⊕,⊗), with ⊕ being addition of attractors and ⊗ being multiplication of attractors
by positive real numbers. In this way, the following result presents a new modality to
describe the averaged attractor A0 as a convex-like combination of the attractors Ai, i =
1, 2, 3, ..., N .

Corollary 2. For given sets PN and MN , the average attractor A0, corresponding to p0

given by (5), can be expressed as

A0 = α1 ⊗A1 ⊕ . . .⊕ αN ⊗AN . (7)

Proof. See the sketch of the proof in Appendix B.

3. Control and anticontrol of the COVID-19 system (2) with PS algorithm

If any of the bold constants in system (1) is considered as being the bifurcation param-
eter p, the system belongs to the class of systems (2). Consider one of the three possible
choices of p as the coefficient of variable x2 in the second equation

·
x1 = −0.1053x23 + 2.3430× 10−5x21 + 0.1521x2x3 − 0.0018x1x2,
·
x2 = 0.1606x23 + px2 − 0.205x1,
·
x3 = 0.2845x3 − 0.0001x1x3 − 1.2155× 10−5x1x2 + 2.3788× 10−6x21.

(8)

For simplicity, in Fig. 2 the bifurcation diagram of the first variable x1 versus p is
presented, wherefrom one can see that the system presents rich behavior.

Note that due to the discrepancy between the very large values of the variables of 103

order on one side and the very small values of the coefficients of about 10−5 order on
the other side, the numerical integrators used for system (8) encounter difficulty in giving
accurate results (see e.g. encircled parts in Fig. 2 (a) and Fig. 6 (a)).

As can be seen, system (8) belongs to the class of systems modeled by the IVP (2) with

g(x) =

 −0.1053x23 + 2.3430× 10−5x21 + 0.1521x2x3 − 0.0018x1x2
0.1606x23 − 0.205x1
0.2845x3 − 0.0001x1x3 − 1.2155× 10−5x1x2 + 2.3788× 10−6x21

 ,
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and

B =

 0 0 0
0 1 0
0 0 0

 .

Consider, next, some of the most representative cases.
Examples

1. Suppose that one intends to force the system to evolve along the stable cycle corre-
sponding to the parameter value p = 0.423 with the PS algorithm (see the zoomed
image in Fig. 1 b)), i.e. to approximate A0, with p0 = 0.423, and the attractor A∗

is obtained with the PS algorithm. For this purpose, one can find two other values
p1 and p2 be such that p1 < 0.423 < p2 (see relation (3)). Let the values of p1,2
and related weights m1,2 such that the relation (5) gives p0 = 0.423. One of the
simplest choices is p1 = 0.422, p2 = 0.424 and m1 = m2 = 1 (see Fig.1 b)). There-
fore: p0 = (m1p1+m2p2)/(m1+m2) = 0.423 and the PS algorithm will act with the
switching scheme [1 ◦ p1, 1 ◦ p2]. The obtained switched attractor A∗ approximates
the averaged attractor A0, corresponding to p0 = 0.423, A∗ ≈ A0, as can be seen in
Fig. 3 a) where, both attractors are overplotted after transients are discarded (red
and blue, respectively). The match between the two attractors is also verified by
Poincaré section with the plane x3 = 80 (Fig. 3 b) and histograms (Figs. 3 c) and
d), respectively).

2. Another stable periodic motion, corresponding to p = 0.43, can be obtained with the
PS algorithm via the scheme [1 ◦ p1, 1 ◦ p2, 3 ◦ p3] with p1 = 0.4265, p2 = 0.4287 and
p3 = 0.4316 (Fig. 2 b) and m1 = m2 = 1 and m3 = 3. As the bifurcation diagram
shows, around the value p = 0.43, the window contains interleaved thin periodic
and chaotic windows and, therefore, the considered cycle is difficult to approximate.
However, with acceptable errors, the switched attractor A∗ (red plot in Figs. 4)
approximates the averaged attractor corresponding to p = 0.43 (blue plot Figs. 4).
Figs. 4 a-d) show the phase plots of the two attractors, their Poincaré section with
the plane x3 = 80, and histograms, respectively. The mentioned relative small errors
are remarked in the Poincaré section.

3. Not only stable periodic trajectories can be approximated by the PS algorithm, but
also chaotic trajectories. Thus, suppose one intends to force the system to evolve
along the chaotic trajectory corresponding to p = 0.42905 (Figs. 2 (b)) considering
e.g. the values p1 = 0.4265 and p2 = 0.4316, with the scheme [1 ◦ p1, 1 ◦ p2]. The
result is presented in Figs. 5. As expected, and as shown by the phase plot (Fig. 5
(a)), Poincaré section (Fig. 5 (b)) and histograms (Figs. 5 (c), (d), respectively), due
to the finite time in which the PS acts, the match between the two chaotic attractors
is only an asymptotical process.

4. While in the above case two chaotic attractors have been used to generate another
chaotic attractor, one can approximate a chaotic attractor, e.g. the one corresponding
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to p0 = 0.4286, using two values, e.g., P2 = {0.423, 0.43} corresponding to stable
cycles, and M2 = {1, 4} for which, via (5), p0 = 0.4286 (see Fig. 2 (b)). Similarly,
one can approximate some stable cycle starting from two other stable cycles. For
example one can obtain the stable cycle corresponding to p = 0.423, starting from
two (or more) values framing the value 0.423.

As mentioned at the beginning of this section, the form of system (2) allows other two
choices of the bifurcation parameter p. One of them is

·
x1 = −0.1053x23 + 2.3430× 10−5x21 + 0.1521x2x3 − 0.0018x1x2
·
x2 = 0.1606x23 + 0.4404071x2 − px1
·
x3 = 0.2845x3 − 0.0001x1x3 − 1.2155× 10−5x1x2 + 2.3788× 10−6x21,

(9)

with the bifurcation diagram presented in Fig. 6. As shown in the case of system (8), by
using the PS algorithm, system (9) can be determined to evolve, e.g., along the stable cycle
corresponding to p = 0.2115 with, e.g., the scheme [1 ◦ 0.211, 5 ◦ 0.2116] (Fig. 6 (b)).

Remark 2. i) As it happens often in nature, there are many systems where, accidentally
or not, one or several parameters switch more or less periodically their values such that
the system changes its dynamics. As proved in [17], the PS algorithm can be applied even
randomly in the sense that, given a set of parameters, PN , with underlying weights AN ,
changing randomly the order of the parameters, the approximation still works.

ii) The bifurcation diagram is useful to understand the way in which the PS algorithm
works and also to allow easily the choice of parameters. However, as Corollary 1 shows,
without a bifurcation diagram by choosing some set PN with some weights MN , the PS
algorithm always approximates an attractor A0, with p0 given by (5).

4. Attractors decomposition and Parrondo’s paradox

Parrondo’s paradox can be described as: “A combination of losing strategies becomes
a winning strategy” [25]. Illustrative examples, applications and the solution with tech-
nical proofs of the paradox can be found e.g. in the references presented in [44]. In this
section we show that the PS algorithm generalizes the form to “chaos+chaos=order” or
“order+order=chaos” in the case of the considered COVID-19 model (1).

Denote for clarity the attractor corresponding to some parameter value p with Ap.
Consider the attractors Ai, i = 1, 2, ..., N , as being chaotic with behavior denoted by

chaosi, i = 1, 2, ..., N , and A0 a regular attractor, whose behavior is denoted order. Then,
(7) can be written symbolically as follows

order = chaos1 + chaos2 + ...+ chaosN , (10)

i.e., a generalized form of the Parrondo paradox, where only two participants are considered.
The coefficients αi maintain their roles as weights in all dynamic.
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As seen before, the attractor corresponding to p = 0.423, denoted A0.423 (Example 1),
has been approximated by the switched attractor obtained with the PS via the scheme
[1 ◦ p1, 1 ◦ p2]. Since, in (6), α1 = α2 =

1
2 , and following the decomposition relation (7), the

attractor A0.423 can be decomposed as

A0.423 := A0 =
1

2
⊗A0.422 ⊕

1

2
⊗A0.424. (11)

Because the two attractors used in the PS algorithm are chaotic, if one denote the chaotic
behaviors by chaos1 and chaos2, respectively, and the obtained regular motion by order,
the relation (11) can be written in parrondian terms as follows

chaos1 + chaos2 = order.

Therefore, in this case the PS algorithm acts as a control-like algorithm.
If one denotes α1 = α2 = 1

5 , and α3 = 3
5 , the attractor corresponding to p = 0.43

obtained in Example 2 can be expressed as follows

A0.43 =
1

5
⊗A0.4265 ⊕

1

5
A0.4287 ⊕

3

5
A0.4316, (12)

which, again, can be in terms of Parrondo’s paradox as the following chaos control-like

chaos1 + chaos2 + chaos3 = order,

where chaosi, i = 1, 2, 3, represent the chaotic behavior of the three attractors used in the
PS algorithm.

In the case of Example 3, the obtained attractor A0.42905 can be decomposed as

A0.42905 =
1

2
⊗A0.4265 ⊕

1

2
⊗A0.4316, (13)

which can be written as
chaos1 + chaos2 = chaos3,

which does not represent a Parrondo paradox. Considering Example 4, the chaotic attractor
A0.4286, which can be decomposed as

A0.4286 =
1

5
⊗A0.423 ⊕

4

5
⊗A0.43,

can be expressed as an anticontrol-like formulation, in which switching the parameter
within a set of values which will generate stable motion, the obtained attractor is a chaotic
one

order1 + order2 = chaos.

Because of the PS algorithm properties, every stable or chaotic attractor can be ob-
tained by chaos control or anticontrol-like algorithm, using the only condition that the
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considered value p0 is framed (see (3)) by values p1 and pN which are of opposite kind
(generate chaotic behavior in the case of chaos control-like, or regular behavior in the case
of anticontrol-like).

One could imagine two main situations when the algorithm can be considered as chaos
control or anticontrol scheme. The most important is the chaos control algorithm. Suppose
the system evolves chaotically for some parameter value p1 and one intends to change this
behavior and stabilize it to evolve along a stable attractor corresponding to the p0 value
which, for some reasons, cannot be set. Then, chosen another admissible value p2, for
which the system evolves chaotically, such that (5) gives for adequate weights m1,2 the
value p0, the PS algorithm approximates the desired stable attractor A0. Obviously, there
could be several parameters pi, i = 1, 2, ..., N , with corresponding chaotic (or regular)
behaviors which generate the same attractor A0 (see Remark 1). The anticontrol in the
case of COVID-19 pandemic could be used for example when it is desirable to reduce the
relative size of the chaotic regions in the phase space.

5. Conclusion and discussions

In this paper it is shown how the PS algorithm can be used to obtain a stabilization of
the chaotic behavior of a pandemic like COVID-19 propagation, modeled by the relation
(2). In support of this idea, note that the most mathematical models of integer or even
fractional order describing COVID-19 can be presented by (2) as can be seen in e.g. few of
the numerous works on this subject [28, 29, 30, 31, 32, 33, 34, 35]. Moreover, the algorithm
has been proved to be useful experimentally too [24]. The method determines the system
to change the behavior to any other of its possible regular or chaotic behavior. One of
the main advantages of the PS algorithm is the fact that it can be applied to most of
the known dynamical systems. Also, compared to the classical methods of chaos control,
where due to the way in which the parameter is changed, the obtained stable evolution
has a new behavior, different with the potential system attractors. In the case of the PS
algorithm, the obtained attractors belong to the set of all admissible attractors. Moreover,
the PS algorithm allows to generalize of the Parrondo’s paradox. Beside the possibility to
approximate any desired behavior of a system modeled by (2), the PS algorithm provides
a new and interesting possibility to express any attractor as a convex combination of other
attractors, like in the considered COVID-19 system where, for example, a stable attractor
can be considered as a convex combination of other, chaotic attractors.
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Figure 1: Sketch of the sets P5 and A5 (after [20]).



Figure 2: (a) Bifurcation diagram of the first component x1 of the COVID-19 system (1); (b) Zoomed
image to unveil periodic windows.



Figure 3: Chaos control-like. Switched and averaged attractors A∗ and A0 using the scheme [1 ◦ p1, 1 ◦ p2]
with p1 = 0.422 and p2 = 0.424 (red and blue, respectively). (a) Phase plot; (b) Poincaré section with
the plane x3 = 80; (c)-(d) Histograms of the first component x1 of the averaged and switched attractors,
respectively.



Figure 4: Chaos control-like. Switched and averaged attractors A∗ and A0 using the scheme [1 ◦ p1, 1 ◦
p2, 3 ◦ p3] with p1 = 0.4265, p2 = 0.4287 and p3 = 0.4316 (red and blue, respectively). (a) Phase plot; (b)
Poincaré section with the plane x3 = 80; (c)-(d) Histograms of the first component x1 of the averaged and
switched attractors, respectively.



Figure 5: Switched and averaged attractors A∗ and A0 using the scheme [1 ◦ p1, 1 ◦ p2] with p1 = 0.4265
and p2 = 0.4316 (red and blue, respectively). (a) Phase plot; (b) Poincaré section with the plane x3 = 80;
(c)-(d) Histograms of the first component x1 of the averaged and switched attractors, respectively.



Figure 6: (a) Bifurcation diagram of the first component x1 of the COVID-19 system (9); (b) Zoomed
image.



Appendix A. Sketch of the proof of Corollary 1

One of the existing proofs of the convergence of the PS algorithm shows that the
switched solution approximates a solution of the linearized system of the averaged system
[19]. Consider the switched system

·
y(t) = g(y(t)) + p(t/λ)By(t), y(0) = y0, (A.1)

where p : I → R is a periodic function with period T , having the averaged value

1

T

∫ t+T

t
p(u)du = q, ∀t ∈ I.

In terms of the scheme S (4), T =
∑N

i=1mih. Also, consider the averaged system

·
x(t) = g(x(t)) + qBx(t), x(0) = x0. (A.2)

Let s the unique solution of (A.2) (see Assumption H1) in whose neighborhood the lin-
earization of (A.2) is

·
ε = [G(x(t)) + qB]ε, ε(0) = ε0,

where ε(t) = x(t)− s(t), and G is the Jacobian of g evaluated at s.
Next, by linearizing (A.1) with e(t) = y(t)− s(t) one obtains

·
e(t) = [G(t) + p(t/λ)B]e(t), e(0) = e0.

Next it can be proved that there exists λ > 0 such that limt→∞||e(t)−ε(t)|| = δ(λ2), where
δ(λ2) is an order function. Here, λ is used to set the length of the integration step size h.

Appendix B. Sketch of the proof of Corollary 2

Under uniqueness assumption (H1), one can naturally assume that there exists a linear
(bijective) order-preserved mapping [20] (see Fig. 1)

H : P → A,

where P is the set of all admissible parameters value and A the set of corresponding
attractors. A general way of defining ⊕ and ⊗ is

α⊗A := H(αH−1(A)),

and
A1 ⊕A2 := H(H−1(A1) +H−1(A2)).

Next, using the relations H−1(Ai) = pi, H
−1(H(αipi)) = αipi, and the expression of

p0, given by (5) the relation (7) can be easily verified.

21


