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Abstract

In this paper we consider the possibility to implement the technique of
changes in the system variables to control the chaos introduced by GÄuemez
and Mat¶ias for continuous dynamical systems to a class of discontinuous
dynamical systems. The approach is realized via di®erential inclusions
following the Filippov theory. Three practical examples are considered.

1 Introduction

In the last years the main general methods for stabilization of chaos: slightly
perturbations of a system parameter (the most known being the OGY method
[1]) and changes in the system variables in the form of instantaneous pulses
(method introduced by GÄuemez and Mat¶ias (see [2, 3]) have proved to be of a real
interest. Thus the chaotic dynamical systems becomes an unlimited reservoir
of stable behaviour. While the ¯rst algorithms work in the cases when we
have access to some system parameter without changing the state variables, the
second class of methods are useful in the cases when the system parameters
are unaccessible, namely in the cases of certain chemical, biological electrical
circuits etc.

The method considered in this paper performs changes in the system vari-
ables every time interval ± in the form

x(t) Ã x(t)(1 + ¸) (1)

where x are the state variable and the pulse ¸ can be positive or negative. This
algorithm was applied to continuous1 and discrete chaotic dynamical systems
(see [2, 3]).

1The continuity/discontinuity is considered in this paper with respect to the state variables,
the systems being considered time continuous.
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We apply this algorithm to a class of piecewise-continuous dynamical sys-
tems which can be described by state discontinuous right-hand sides di®erential
equations. Because the i.v.p. which models these systems may have not any
solutions in the classical sense, the i.v.p. is transformed via Filippov regular-
ization [4] into a di®erential inclusion which may have even several generalized
(Filippov) solutions. These solutions can be numerical approximated using spe-
cial numerical methods for di®erential inclusions. In this paper the forward
Euler method was used.

The study of this class of piecewise continuous dynamical systems, called
switch dynamical systems too, has been the subject of much ongoing research
(see for instance [4]),.the past few years having seen a dramatic increase of
interest in both the academic and industrial world. Thus, this class of dynam-
ical systems can be found in many di®erent branches of applied science and
engineering. Examples include impacting machines, dry friction, impacts in
mechanical devices, systems oscillating under the e®ect of an earthquake, power
circuits, forced vibrations, switching in electronic circuits, elasto-plasticy, con-
trol synthesis of uncertain systems and many others (see e.g.[5, 6, 7, 8] and their
references).

Therefore, like in the continuous case, the chaos control represents an im-
portant objective.

In order to apply the change of variables (1), some mathematical results on
di®erential inclusions are used.

In this paper the control algorithm was applied to a class of known electronic
circuits, but it works successfully to many other branches.

The paper is organized as follows: Section 1 presents the initial value problem
which model the switch systems together with few underlying results; Section 2
treats the change of variables (1); Section 3 presents the applications to Chua,
Sprott and Guanron circuits

2 Switch dynamical systems

The initial value problem (i.v.p.) which models switch dynamical systems
is a Cauchy like problem

_x(t) = f (x(t)) +

nX

i=1

®i sgnxi(t) ei; x(0) = x0; t 2 I = [0; 1) ; (2)

where the vector-valued function f :Rn ! Rn is considered to be continuous
in Rn , the sign function sgn : R ! R , is the known sign function, ei are
the canonical unit vectors ( e1 = (1; 0; 0; :::; 0) ; e2 = (0;1; 0; :::; 0) ;...) and
®i are real constants. The discontinuity is due to the sign functions. Thus,
the continuity domain consists in a ¯nite number of open regions Di ½ Rn;
i = 1; 2; :::; p; the discontinuity set M (the set of points where the sign
functions vanish) being given by M = Rnn

S p
i=1 Di .
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For instance for the problem
:
x = 2 ¡ 3 sgn(x) , D1 = (¡ 1; 0) ; D2 = (0;

1) ; M = Rn (D1

S
D2) = f0g:

Because the i.v.p. (2) may have not any solutions in the classical sense, Fil-
ippov introduced the di®erential inclusions approach [4]. Thus he transformed
the i.v.p. (2) into a multi-valued Cauchy one

:
x(t) 2 F (x(t)); x(0) = x0; for a. a2. t 2 I ; (3)

where instead of a di®erential equation, one obtain a di®erential inclusion.
Hence

:
x belongs to a set of values, F (x); instead of a single value, f (x); for

some value of t :
F : Rn ¶ Rn is a set-valued function into the set of all subsets of Rn which
can be obtained by the so called Filippov regularization

F (x) = co lim
x0!x

f (x0) (4)

where co is the convex hull and limx0!x f (x0) is the set of all limits of all
convergent sequences f (xk ) with xk ! x: For x 2 M , F (x) is a set, while
for x =2 M; F (x) consists in a single point f (x) . As example for the sgn
function the Filippov regularization gives the following set-valued function

Sgn(x) =

8
<
:

¡1
[¡1; 1]
+1

for x < 0;
for x = 0;
for x > 0;

which for x = 0 is the whole segment [¡1; 1] :

Applying the Filippov regularization, the i.v.p. (2) becomes

_x(t) 2 f (x(t)) +
nX

i=1

®i Sgn xi(t) ei ; x(0) = x0; for a.a. t 2 I: (5)

As example, the discontinuous i.v.p.
:
x = 2 ¡ 3sgn(x), x(0) = 0 becomes

:
x 2 2 ¡ 3 Sgn(x) , x(0) = 0 for a.a. t 2 [0; 1):

Now, the i.v.p. (2) will be treated via (5) following the Filippov way. Hence
as solution for (2) a generalized solution for (5) will be considered. While the
i.v.p. (2) may have not any classical solutions, the i.v.p. (5) may have even
several solutions, called Filippov or generalized solutions (a generalized solution
of the i.v.p. (3) (or (5)) is an absolutely continuous vector-valued function
x (²) : [0; 1) ! Rn verifying the i.v.p. (3) (or (5)) for a.a. t 2 [0; 1)). The
background of di®erential inclusions and their solutions can be found in [9] and
[10].

The conditions under which the i.v.p. (5) admits solutions and de¯nes a
dynamical systems are presented in [11] and will be not considered here.
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Several properties of switch dynamical systems were analyzed by the author
as: continuous approximation [12], synchronization [13] and anticontrol of chaos
[14].

In order to obtain a numerical solution of (2) special numerical methods
for di®erential inclusions can be used. The simplest one, which is used in the
present paper, is the forward Euler method (see [15] for the background on
numerical methods for di®erential methods).
Using the known notations, the explicit Euler method for di®erential inclusions
gives a sequence (yk) approximating the real trajectory

yk+1 = yk + h ´k; y0 = x0; k = 1; 2; :::

where ´k 2 F (yk ) is chosen following some selection strategies (see [16] for
selection strategies) and h is the step-size. Here, we chosen ´k randomly.
For instance, for F (x) = Sgn(x); ´k 2 F (yk ) means that ´k takes randomly
a value between [¡1; 1] .

3 The control algorithm

Let consider the following simplī ed form of (5 )

:
x(t) = g(x(t)) ; x(0) = x0; (6)

with g : Rn ! Rn a piecewise-continuous function. Then, using the transfor-
mation (1) to the switch system (6) one obtain the following controlled system

:
x(t) =

8
<
:

g1(x(t)) if t mod ± = 0

g(x(t)) if t mod ± 6= 0
; (7)

where g1(x(t)) = g [(1 + ¸)x] .
If g is homogenous we can introduce the following important result

Theorem 1 Let the switch dynamical system (6) with g homogenous. Then
the switch dynamical systems

:
x(t) = g (x(t)); (8i)
:
x(t) = (1 + ¸) g (x(t)); (8ii)

have the same trajectories.
Proof. In [4] (Theorem 6, p.105) is proved that if p(x) > 0 is a continuous

function, then the equations
:
x(t) = g(x(t)) and

:
x(t) = p(x(t)) g(x(t)) have the

same trajectories. Next, from the homogeneity of g it follows that g [(1 + ¸)x] =
(1 + ¸) g(x) . Choosing ¸ small enough for t mod ± = 0 one obtain p(x(t)) =
p(t) = 1 + ¸ > 0 and the theorem is proved.

The relation (7) can be easily utilized to our i.v.p. (2).
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Remark 2 i) As in the continuous case, if g is nonhomogenous, the stabilized
orbits could be generally only very closed, but not identical, to one of the stable
orbits of the original system, while if g is homogenous the trajectory of any
solution of (8 ii) is also the trajectory of some solution of (8 i).
ii) At least in the homogenous case, following the Theorem 1, the same behaviour
should be found to both systems (controlled and uncontrolled).
iii) The di®erence between the continuous and discontinuous case appears only
in the discontinuity points x 2 M:
iv) As in the continuous case, for each state variable, di®erent values for ¸
(even 0) could be used.
v) The algorithm depends strongly on the characteristics of the used numerical
method, especially the step-size. In the present paper we chosen the step-size
which, for small changes on his size, dooes not a®ect the results.

4 Applications

We chosen for applications the case of three representative electronic cir-
cuits where the algorithm could practical veri¯ed too. These kind of circuits can
be easily implemented by circuitry in the laboratory as in [17, 18, 19]. Generally
the negative values for ¸ were useful, but few cases with ¸ > 0 were found.
The biggest values for ± and the smaller values for ¸ were used in order to
do not change semni¯cantly the system structure.

When a closed tra jectory was stabilized, the same initial conditions (of the
controlled and uncontrolled systems) were used.

For the sake of simplicity in the next we consider only the di®erential equa-
tions without the initial conditions.

All the images were obtained with a Turbo Pascal program which plots the
projections in the phase portraits and time series. The numerical integration
was realized for t 2 [t0 = 0; tmax] . In the rigth colomn by ± = 0 and ¸ = 0
one understain that the system is uncontrolled.

4.1 Chua circuit

In [20] is presented the following nonhomogenous generalized mathematical
model of the classical Chua's circuit

:
x1 = ¡2:57x1 + 9 x2 + 3:86 sgn (x1);
:
x2 = x1 ¡ x2 + x3;
:
x3 = ¡® x2 ;

(9)

For ® = 17 the behaviour is chaotic (Fig.1(a)) (see [12] too for some math-
ematical characteristics of this system). For for ± = 0:01 and ¸ = ¡0:002
two controlled tra jectories reach two stable ¯xed points (Fig.1(b)), which are
di®erent from those of the uncontrolled system (see Remark 2i).

Figure 1(a)(b) (Here or to the end of the paper)
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4.2 Sprott circuit

One of the circuits introduced in [18] is modelled by the following discontinuous
di®erential equations

:
x1 = x2;
:
x2 = x3;
:
x3 = ¡x1 ¡ x2 ¡ ®x3 + sgn(x1);

(10)

The chaotic behaviour, for ® = 0:5 , can be seen in Fig.2(a)). Taking
± = 0:05 and ¸ = ¡0:005 one stabilize the chaotic behaviour and two ¯xed
point are reach (Fig.2(b)).

Figure 2(a)(b) (Here or to the end of the paper)

4.3 Chen circuit

A modi¯ed Chen system [21], which shares several important qualitative proper-
ties with Lorenz model, is modelled by the following homogenous discontinuous
di®erential equations [22]

:
x1 = a (x2 ¡ x1);
:
x2 = sgn(x1)(c ¡ a ¡ x3) + c q x2;
:
x3 = sgn(x2)x1 ¡ b x3;

(11)

Choosing a = 1:18; b = 0:168; c = 7 and q = 0:1 , like in [22], the system
behaves chaotically (Fig.3(a)). For ± = 0:05 and ¸ = 0:002 a periodic closed
trajectory was obtained (Fig.3(b)). The same kind of motion was obtained but
with a higher periodicity was obtained for ± = 0:025 and ¸ = ¡0:01.

This system represents one of the few cases when positive value for .̧ could
used in order to stabilize the chaotic behaviour.

The right-hand side being a homogenous function the Theorem 1 can be
applied.

Figure 3(a)(b)(c) (Here or to the end of the paper)

5 Conclusion

In this paper we applied in a class of switch dynamical systems modelled by
(2) the algorithm of suppression of chaos through changes in the system variables
introduced by GÄu¶emez and Mat¶ias in the class of continuous dynamical systems.

For the homogenous case the similarity between the set of the trajectories
of the controlled and uncontrolled systems was proved. In the nonhomogenous
case the most one can hope is to obtain stabilized trajectories closed to some
stabilized trajectories of the uncontrolled system
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We have applied the method to the stabilization of chaos in three practical
examples which model electronic circuits. Using the algorithm we have stabilized
periodic orbits and ¯xed points.

An open problem, as for the continuous case, is the choose of the step-size
of the numerical method utilized in order to be sure that the results are correct.
In this purpose the introduction of the shadowing technique3 in the class of
discontinuous dynamical systems -already studied for the continuous case (see
e.g. [23])- would be of a real interest.
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(c)
Fig.3(a)(b)(c)
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Figure captions

Fig.1. (a) A chaotic trajectory of the Chua system (9). (b) two stable ¯xed
points of the controlled system for ± = 0:01 and ¸ = ¡0:002 .

Fig.2. (a) A chaotic trajectory of the Sprott system (10). (b) two stable ¯xed
points of the controlled system for ± = 0:05 and ¸ = ¡0:005:

Fig.3. (a) A chaotic trajectory of the Chen system (11). Two stabilized pe-
riodic motions of the controlled system for (b) ± = 0:05 and ¸ = 0:002
(the ¯rst steps were omitted in the phase portraits) and. (c) ± = 0:025 and
¸ = ¡0:01.
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