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Chapter 10
Chaos Control and Anticontrol of Complex
Systems via Parrondo’s Game

Marius-F. Danca

Abstract In this chapter, we prove analytically and numerically aided by computer
simulations, that the Parrondo game can be implemented numerically to control
and anticontrol chaos of a large class of nonlinear continuous-time and discrete-time
systems. The game states thatalternating loosing gains of two games, one can actually
obtain a winning game, i.e.: “losing + losing = winning” or, in other words: “twougly
parents can have beautiful children” (Zeilberger, on receiving the 1998 Leroy P. Steele
Prize). For this purpose, the Parameter Switching (PS) algorithm is implemented. The
PS algorithm switches the control parameter of the underlying system, within a set of
values as the system evolves. The obtained attractor matches the attractor obtained by
replacing the parameter with the average of switched values. The systems to which
the PS algorithm based Parrondo’s game applies are continuous-time of integer or
fractional order ones such as: Lorenz system, Chen system, Chua system, Rossler
system, to name just a few, and also discrete-time systems and fractals. Compared
with some other works on switch systems, the PS algorithm utilized in this chapter is
a convergent algorithm which allows to approximate any desired dynamic to arbitrary
accuracy.

10.1 Introduction

In [34, 36], Parrondo et al. showed that altemating the loosing gains of two games,
one can actually obtain a winning strategy with a positive gain, i.e.

losing + losing = winning. (10.1)
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264 M.-F. Danca

Since its discovery, this apparent contradiction has been known as Parrondo’s
paradox (or game, as we call in this work), becoming an active area of research
for example in discrete-time ratchets [4], minimal Brownian ratchet [ 28], molecular
transport [26], and so on. Parrondo’s game is considered as game theory in the
Blackwell sense [6] and in [2, 24] was extended from its original form to include
playerstrategy. In[10, 11]a mechanism for pattern formation based on the alternation
of two dynamics, is proposed. For a review of the history of Parrondo’s paradox,
developments, and conmections to related phenomena, see [1].

This kind of alternation between weakness and strength, order and chaos, or losing
and wining, can be found or produced in physical, biological, quantum, mathematical
systems and in control theory, or even fractals, where combining processes may lead
to counterintuitive dynamics. The apparently trivial phenomenon seems to be typical
not only for theoretical systemns but also in nature, where there are many interactions
duetosome accidental or intentional parameter switches. Even more, there is a belief
that this kind of mechanisms could be used as a possible explanation of the origin of
life [18].

If we replace in Parrondo’s paradox the words “losing” with “chaos” and “win-
ning” with “order” (as the opposite of chaos), then Parrondo’s game can be written
in the following form:

chaosy + chaosy, = order, (10.2)

where chaosy 2 and order represent two chaotic dynamics and a regular dynamic
respectively of a considered system. The form (10.2) of Parrondo’s game is exploited
in e.g. [3], where it is used to study the effects of combining different dynamics of
two real systems, and also in [39, 40] where alternations between two dynamics
of quadratic maps are investigated. In [15, 17], the study was extended to complex
systems (fractals).

Relation (10.2) can be considered as a new kind of chaos control in the sense
that by alternating two chaotic dynamics, it is possible to obtain a regular dynamic.
Similarly, one can imagine an anticontrol-like scheme as

order, + order, — chaos. (10.3)

A natural question is if it is possible to generalize Parrondo’s game (10.2) in

the sense that alternation between two dynamics in (10.2) is replaced with switches
between N = 2 dynamics, i.e.

chaos| + chaosy + .+ - - chaosy = order, (10.4)

or
order) + ordery + - + ordery = chaos. (10.5)

A positive answer is given in [39] for continuous time chaotic systems via the PS
algorithm.

xcfu@shu.edu.cn



10 Chaos Control and Anticontrol of Complex Systems via Parrondo’s Game 265

The goal of this chapter is to present a comprehensive account of the approaches
used to define these chaos control-like and anticontrol-like algorithms, which are
generalizations of Parrondo’s paradox, via the PS algorithm.

10.2 Parameter Switching Algorithm

After presenting the general form of Parrondo’s game, we describe the PS algorithm
necessary to implement the Parrondo game. For this purpose, we have to choose a
finite set of ¥ > 1 parameters values, #y = {p1, p2, ..., py}, inside which the
algorithm switches the control parameter p as the considered continuous (discrete)-
time system evolves. While for discrete-time systems, the algorithm simply switches
pevery m; iterations, i = 1, 2, ..., N, for the continuous-time systems, the time inter-
val where the system is defined I = [0, T], for T > 0, is partitioned in short time
subintervals f; j, fori = 1,2, ..., N, j =1, 2, ..., each having length m; i, 1 being a
small real value (m; being p; “weights”), such that [ = U i Uf;l fj ; (see the sketch
inFig. 10.1 for N = 2). While the underlying Initial Value Problem (IVP) is numeri-
cally integrated, the algorithm switches successively p within £y in the subintervals
Ii”,',l' = 1, 2, — N,] = ]., 2, ...,i.e.in]l,l, 12,1, e IN,la 12,1, 12,2, e Ig,N, 13,1,
and so on, until the numerical integration ends.

For the sake of simplicity, hereafler the index j will be dropped unless necessary.
For continuous-time systems, the resulted “switched” attractor approximates the

“averaged” attractor which is obtained if the parameter p is replaced with the average
of the switched values, p* (see Fig. 10.1):

N

Ve
Pt = —Zzt:Nl P pie Py. (10.6)

i—1 M

rl
P P

p*| : Moy . O O i o

| P 7

-

!n '(:, "\' 'r_-_ !

Fig.10.1 Time subintervals [; ; and the piece-wise constant function p, for thecase N = 2 (skeich)
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266 M.-F. Danca

10.2.1 PS Algorithm Applied to Continuous-Time Systems

Consider a class of systems modeled by the following TVP:
0 =f@x®)+ pAx@), t<I=[0,T], x©)=xo, (10.7)

for T > 0, x0 € R", p £ R the control parameter, A ¢ L(R*)and f: R* - R*a
nonlinear function.

The IVP (10.7) models a great majority of continuous nonlinear and autonomous
dynamical systems depending on a single real control parameter p such as Lorenz
system, Rosler system, Chen system, Lotka-Volterra system, Rabinovich-Fabrikant
systemn, Hindmarsh-Rose system, Lii system, some classes of minimal networks, and
many others. For example, for the Lorenz system

X = alx; —x1),
)ﬁz =X (p — JC3) — X2, (10.8)

X3 = X1X2 — CX3,

with @ = 10, ¢ = 8/3 and p the control parameter,’

aixs; —xy) 000
Jy = —x1x3—x2 |, A=|100
X1X2 —CX3 000

Let pp(t) = p(f) for any A = Q. Then, the “switching” equation (related to the
PS algorithm) has the following form:

X)) = fx@) + pa®)Ax(@), tI=[0,T], x(0)=xo, (10.9)
and the “average” equation, obtained for p replaced with p* given by (10.6), is
X)) = fERE) + prAZ@), teI=[0,T], ¥0)=%.  (10.10)

By applying the PS algorithm, the obtained switched solution of (10.9) will con-
verge to the average solution of (10.10).

To approximate a desired solution, corresponding to some value p, we have to
replace p* with p in (10.6) and choose a set %y with the underlying weights m;,
i = 1,2,..., N, such that (10.6) is verified. Next, by applying the PS algorithm
with these ingredients, the obtained switched solution will approximate the searched
(averaged) solution.

1Also, @ and ¢ can be considered as control parameters to match to the form (10.7).

xcfu@shu.edu.cn



10 Chaos Control and Anticontrol of Complex Systems via Parrondo’s Game 267
10.2.1.1 Convergence of the PS Algorithm

The following assumptions are made.
Assumption H1. f satisfies the usual Lipschitz condition:

|fi) — fv)l = Lyt — 2|, ¥yi2 €RY, (10.11)

for some L > 0.
Assumption H2. The initial conditions xq and X belong to the same basin of attrac-
tion ¥ of the solution of (10.10).

Under the above assumptions, the convergence of the PS algorithm is given by
the theorem

Theorem 10.1 ([211]) Let || - ||o be the maximum norm on C (I, R™), Under the above
assumplions, it holds that

[x (&) — Z()| < (x0 — Fol + Al All|IZ]IoK) x eEFIFIIADT — 10.12)

Jorallt [0, T, where

K := max
[0, My)

¢
—[0 (P(s) — p*ids

Sketch of the proof':
From (10.9) and (10.10)

t

i
|x(£) = X(B)] < [xo — Xo| + L]O x(s) — X(s)|ds + /0 (pu(s) — p™ids| [ Alllxllo

1
/0 (p(s) — p*)ds

¢
+|\P\|o\|A\|f0 |x(s) — x($)]ds = |xo — Xo| + | AllI¥[lo
t
+(L+ HPHoHAH)/O |x(s) —x(s)lds
t
= |xo — Xo| + Al Allllx[loK + (L + HPHoHAID/0 |x(s) — x(s)]ds,

and by Gronwall inequality [25], one obtains (10.12). [

Next, adopt the following reasonable assumption regarding the notion of the
(numerical) attractor utilized in this paper, necessary to implement numerically the
PS algorithm.

Assumption H3. To every p value, for a given initial condition xg, there corresponds
a unique solution and, therefore, a single numerical attractor, denoted by Ap, con-
sidered as a numerically approximation of its w-limit set [22], after neglecting a
sufficiently long transients.

xcfu@shu.edu.cn



268 M.-F. Danca

The following theorem represents the main result conceming the PS algorithm
for continuous-time systems.

Theorem 10.2 Every atiractor of the system (10.7) can be numerically approxi-
mated by the PS algorithm to arbitrary accuracy.

Notation: Denote by A* the “synthesized attractor”, obtained with the PS algorithm,
and by A+ the “averaged attractor”, obtained for p replaced with p* given by (10.6).

To obtain a desired attractor A, corresponding to some value p, one has to
replace in (10.6) p* with p and choose an adequate set 2y with underlying
weights m;, { = 1,2, ..., N, such that (10.6) is verified. Next, by applying
the PS algorithm, the obtained (switched) attractor A* will approximate the
searched (averaged) attractor Ap.

Remark 10.1 Therelation (10.6) is convex: if one denotes «; — m;/ Z}c\f:l my, then
Z‘;V:l « = 1, and p* = Zf;l «; pi. Therefore, the only necessary condition to
approximate some attractor A is to choose Sy such that p € (Pmins Pmax), With
Pmin — min{Py} and ppax = max{Fy}. Moreover, the convexity implies a
robustness-like property of the PS algorithm: for every set %y, A* will be situated
“between” the attractors A, . and A, . with order being induced by the natural
order of the real numbers in the parameter set .

Theorem 10.2 means that by choosing some value p, there always exists an
attractor Ap (Remark 10.1) and a set of N > 1 parameters £y, such that
P = p € (Pmin, Pmax) with the underlying weights my;, 1 = 1,2,..., N, and
p* given by the relation (10.6).

Next, as stated by Theorem 10.2, Ap+ will be approximated by the atiractor A*,
generated by the PS algorithm.

10.2.1.2 Numerical Implementation of the PS Algorithm

In order to implement numerically the PS algorithm, a numerical method for ODEs
is necessary (for example, the standard Runge-Kutta method) with a fixed step size
h. For the set #y withweights m;, i = 1, 2, ..., N, and a fixed step-seize A, consider
the PS algorithm in the following symbolic scheme:

[m1p1, m2p2, o My PN ] (10.1%)

For example, if one wants to apply the PS algorithm on the set £%, = {py, p2)
with weights m; — 2 and ma — 1, i.e. the scheme [2p;, 1p2] applied with step
size h, it means to do for the first two steps, 2k, of integration of the underlying
IVP, p = py, then for the next single step of size , p = p», then for the next two

xcfu@shu.edu.cn



10 Chaos Control and Anticontrol of Complex Systems via Parrondo’s Game 269

Table 10.1 The pseudocode input :xo, T,N, &, Py, my,..., /iy
of the PS algorithm output : x
w="T/h ji=1
while j < n
fori=1:N
fork=1:m;
X; +— one step integration with p = p;
J=i+1
end
end
end
50

'\I max

10

101

96
P

Fig. 10.2 Bifurcation diagram for the Lorenz system for p < [90, 101]

steps, p = p1, and so on, until the entire integration interval 7 is covered (see the
pseudocode in Table 10.1).

Let consider the Lorenz system. The obtained switched and the averaged attractors
are overplotted in the phase space and in time series. Also, whenever necessary, the
Poincaré section is utilized. The integration time is I = [0, 200] and & = 0.002. For
the stable cycles, the transients were removed.

To have a general view of the parameter space wherefrom we have to peak the p
values, a bifurcation diagram is shown in Fig. 10.2.

1. Next, we present the way in which the PS algorithm can be used to obtain (approx-
imately) stable or chaotic attractors of infeger-order systems.

xcfu@shu.edu.cn
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Fig. 10.3 Top Lorenz stable cycle corresponding to p = 93, obtained with the scheme [1p, 1p3]
with p1 = 90 and py = 96 (Parrondo’s chaos control game: chaos) + chaosy = order)ia
Phase overplot of the attractors 4* and Az« . b,e Underlying chaoctic attractors Aw and Agg. d-f
Cverplot of attractors A* and A ,« time series, The enlarged view in Figure e reveals the inherently
nurnerical errors; Soffom g Lorenz stable cycle corresponding to p = 93, obtained with the scheme
[2p1. 1pa, 1pa, 1pal. with py = 904, pp = 91, p3 = 95, py = 98.2 (Parrondo’s chaos control
game: chaos) + chaosa + chaoss + chaoss = order)

a. Suppose one wants to approximate the attractor corresponding to p = 93
(chosen in a periodic window, Fig. 10.2), which is a stable cycle. To do that,
one can choose, for example %9, = {90, 96}, whose values belong to dif-
ferent chaotic windows in the parameter space (Fig.10.3b, ¢) with weights
my1 = my = 1, which when replaced in (10.6) gives the desired (average)
value p* = (1 % 90 + 1 x 96)/2 = 93. By applying the PS algorithm with
the scheme [1p1, 1p2], the obtained switched attractor A* approximates the

xcfu@shuedu.cn



10 Chaos Control and Anticontrol of Complex Systems via Parrondo’s Game 271

averaged attractor Ap+ (Fig.10.3a). A perfect match is also revealed by the
overplotted time series in Fig. 10.3d—f. Even there exists an apparently per-
fect superposition, in the detail in Fig.10.3e, one can see a relatively small
difference between the two time series, due to the inherently numerical errors.
Sinceinthis example the attractors, corresponding to p; and p,, whose dynam-
ics have been switched, are chaotic and the switched attractor is a regular
motion, one can write in Parrondian words:

chaos) + chaosy = order,

which represents Parrondo’s game applied as a chaos control-like result.

b. The same stable cycle can be obtained e.g. with the scheme [2p1, 1p2, 1p3,
1pa], with py = 90.4, po = 91, p3 = 95, py = 98.2. Again, (10.6) gives
P* = 93 and the switched attractor A* approximates the averaged attractor
Ap+ (Fig.10.3g). Since the attractors corresponding to p;, 1 = 1,2, 3,4, are
chaotic (Figs. 10.2 and 10.3h-i), the control-like Parrondo game is chaos; +
chaoss + chaoss + chaosy = order.

¢. The PS algorithm can be utilized for anticontrol too. For example, using the
scheme [1py, 1 p2] with py = 92 and p, = 100 chosen in two periodic orbits
(see Fig. 10.2 and Fig.10.4a, b), one obtains the chaotic attractor A* which
approximates the stable attractor A« with p* = 96. Because one should use
an infinity time to generate the chactic attractors, the inherently finite-time
approximation is less accurate than that for chaos control, as can be seen in
Fig.10.4 c. However, the shapes of A* and A p+ look similar, as indicated also
by the Poincaré section with the plane x3 = 100 (Fig. 10.4d). In Parrondian
words, the anticontrol result can be written order| + order, = chaos.

2. The PS algorithm applies also to fractional-order systems”
Consider the Chen system of fractional-order [13, 29] in the following form:

DY2x; = p(x2 — x1),
DYFxy = (3.65 — p)xy + 3.65x2 — x1%3, (10.14)

D2.90x3 = X1X2 — 0.3)63,

where D denotes the the Caputo differential operator of order g (see e.g. [12, 33,
37]). The numerical method used here to integrate the system is the Grinwald-
Letnikov method for fractional differential equations (see e.g. [5, 30, 41]). For
p1 = 4.243 and p; = 4.302, the system behaves chaotically (Fig. 10.5a, b) and
with the scheme [3p;, 1 p2] one obtains p* = 4.25775 for which the system is
stable. By applying the P8 algorithm, the switched attractor A* matches perfectly

2There exists no convergence result so far. However, intensively numerical tests reveal, like in the
considered example, a good match between the switched attractor and the averaged attractor in the
case of fractional-order systems.
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Fig. 10.4 Lorenz chaotic attractor corresponding to p = 96, obtained with the scheme [1pq, 1 73]
with 7y = 92 and ps = 100 (Parrondo’s anticontrol game: order) 4+ orders = chaos). a, b
Underlying stable cycles A92 and A1oo: ¢ Phase overplot of the attractors A* and Ag+; d Poincaré
section with x3 = 100 throngh the overplot attractors A* and A«

the averaged attractor A+« (Fig.10.5¢), and this chaoscontrol-like Parrondo game
reads chaos| + chaos; = order.

Inthe above examples, the scheme (10.13) is implemented periodically: the values
of p take successively the values py for m; times, then p; for m times, and so on
until py for my times, after which it repeats. However, the order of p; with the
underlying weight m; can be taken randomly by using, for example, some random
uniformly distributed sequence?’ of values p;. The averaged value, denoted 7, has
to be determined now by the following relation:

- >y mlp;
p* = W, Pi< @N, (1015)

3B.g. the prendorandom fanction, found in all dedicated software,
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Fig. 10.5 Top Stable cycle of the fractional-order Chen systern (10.14), corresponding to p =
425775 (Parrondo’s chaos control game: chaos) + chaosy = order), a, b Underlying chactic
attractors A4.243 and Aszoz: ¢ Phase overplot of the attractors A% and Ap+, Bottom Stable cycle
of the Chen system of integer order (10.16) corresponding to p = 26.08 obtained with randomly
applied scherme [1p), 1p2]: d, e Underlying chaotic attractors Asg and Asg4: £ Phase overplot of
the attractors A* and A«

where, m*; are the total number of switchings of p; when the integration ends. After
a sufficiently large integration interval I, 7* =~ p*. However, in this case, for the
considered example, supplementary precautions should be considered, such as the
dispersal of p values in the parameter space, which have to be close to p*. Also, the
integration interval has to be larger and the step-size s smaller.

Consider the Chen systemn of integer order in the following form

%1 =35(x2 —x1),
Xy = (p —35)x1 — X253 + pxa, (10.16)
X3 = X1X5 — 3x3,

and suppose one wants to obtain the stable cycle corresponding to p = 26.08 [16]

by the scheme [1pq, 1p2] with p1 = 26 and 26.16, generating chaotic attrac-
tors (Fig.10.5d, e). With the step size h = 0.0005 and the integration interval
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I = [0, BOO], the PS algorithm approximates the stable cycle (Fig. 10.51). Now,
the relatively small differences between the two attractors are clearen.

10.2.2 PS Algorithm Applied to Maps

As proved analytically in Sect. 10.2.1.1 by applying Parrondo’s game to continuous-
time systems, the switched solution obtained with the PS algorithm converges to the
averaged solution. However, for the discrete systems, things are different.

Consider the following discrete variant of (10.7):

Xpv1 = flxe) + geAxg,
where xo € R", f : R" — R” satisfies the Lipschitz condition, and {gx }ren,
ge=pifork e [Mi_i+1, M), Mo=0,M;:=>_mj,pic Py, 1<i=<N,

and T := My, is a T-periodic piecewise constant sequence. Then, there is no any
relationship with the average equation

Xrp1 = fx) + ptAx,

where p* is given by (10.6), such as for the case of continuous-time systems.
However, for the following discrete version of the PS algorithm:

Xpa1 =X + A (o) + ge Axy),

there exists an averaged form:
X1 = e + h(f (o) + p* Ax),

where the averaging theory applies [14].

Even Theorem 10.1 does not apply to the most-known discrete-time systems (like
the logistic map), or to complex systems (like fractals), but the PS algorithm still
works as chaos-control like and anticontrol-like tasks, for which quite intriguing
results as can be seen as in the next section.

10.2.2.1 PS Algorithm Applied to the Logistic Map

Apply the PS algorithm to the logistic map f : [0,1] — [0, 1], f(x) = px(1 — x),
p < [0, 4], in the following simplest form*:

L4l = quk(l = xk), k= O, 1, (10.17)

*In [3, 23], some particular forms of switches are used to study the behavior of altemated orbits for
the more accessible quadratic (Mandelbrot) map x;1 = x% + p.
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[3,3.9,3.61,2.61,3.4}) applied to the logistic map (Parrondo’s chaos-control game: chaos 4
chaosy + chaoss + chaosy + chaoss + order) = order); a Orbits of the underlying dynamics
corresponding to p;. 1 = 1,2, ..., 5; b Cobweb indicating the multiple periods of the stable cycle;
¢ Time series of the controlled orbit; d First retarn map

To analyze the numerical results, one can use time series, cobweb and first-return
map, have been utilized with g; defined as above: g = p; fork € [M;_1 + 1, M;],

1=i=N.

This time, with the PS algorithm one can obtain stable orbits which are different
from those of the logistic map [14]. Therefore, the PS algorithm can be used to
control chaos or obtain chaoticization. By choosing empirically the weights m; and
Zy, it is possible to control the chaotic behavior of the logistic map. As verified
numerically in [14], there exists a positive probability to realize chaos control by
using (the generalized) Parrondo’s game.

1. For example, choosing the scheme [5p1, 1 p2, 3 p3, 1 pa, 4ps] with &5 = {3, 3.9,
3.61,2.61,3.4], one obtains the following Parrondo’s game for chaos control
(Fig.10.6): order1 +chaos; +chaoss+order; +orders = order . The dynamics
correspondingto p;, i = 1, 2, 3,4, 5, are plotted in Fig. 10.6 a. In this case, order
represents a stable orbit, different from but similar to any of the possible orbits
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Fig. 10.7 Other chaos control and anticontrol of the logistic map; a Chaos control with
(1p1. 1pa. 1p3, 1pa, 1ps, 1ps, Lps] with py = 3.6, pa = 3.7, p3 = 3.75, py = 3.8, ps =
3.86 and ps = 0.9 (Parrondo’s chaos control game: order) 4 ordera 4+ orders + orders +

chaos) + chaosy =

order); b Chaos control with [1p1, 3p0. 2p3. 1pa, 25, 2p4] with

26, pp = 2.9, pz = 3.1, pa = 3.4, ps = 3.7, ps = 4 (Parrondo’s chaos control game:

order) + ordery + orders + orderg + chaos) 4+ chaoss =

order), ¢ Chaos control with

[10p1,1p2,5p3, 10pa, 1ps, 10pel.py =34, pa =235, p3 =35, pa =28, ,ps =19, ps=
0.85 (Pamrondo’s chaos control game: order) + ordery + orders +orderg + oredrs + orderg =
order), d Anticontrol with [1p), 1ps] with p; = 3.738 and py = 3.84 (Parrondo’s anticontrol

game: chaos) + order) = chaosy)

of the logistic map, revealed by the cobweb, time series and first return map

(Fig.10.6 b, ¢ and d, respectively).

2. By using the scheme [1p1, 1ps, 1p3, 1p4, 1ps, 1 ps, 1 ps] with p1 = 3.6, py =
3.7, p3 =375, p4 =3.8, ps =3.86and ps = 0.9, one obtains the stable orbit
plotted in Fig. 10.7 a. In this case, chaos control is implemented by Parrondo’s
game: chaos1 + chaos; + chaoss + chaoss + chaoss +order; = oder.

3. The stable orbit plotted in Fig. 10.7 b is obtained by the scheme [1 p1, 3p2, 23,
1pa, 2ps, 2pslwith p1 =2.6, pp =29, p3 =31, pa=34, ps =37, ps =
4. In this case, the Parrondo game has the following form: order1 + ordery +
orders + orders 4+ chaos) + chaos, = order.
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4. Theperiodic bursts in Fig. 10.7 ¢ [14] are obtained by the scheme [10p1, 1 p2, 5p3,
10p4, 1ps, 10pg], with p1 — 3.4, p2 — 2.35, p3 = 3.5, ps — 2.8, ., ps —
1.9, pg = 0.85 and Parrondo’s game is: order| + orderay + orders + ordery +
oredrs + orderg = order.

5. If one uses the scheme [1py, 1p;] with p; = 3.738 and p, = 3.84, the
PS algorithm simulates the Parrondo game to model the anticontrol of chaos:
chaos| + order) = chaoss (Fig. 10,7 d).

10.2.2.2 PS Algorithm Applied to Fractals

In [17] the PS algorithm is used to alternate two different dynamics of the quadratic
complex map zy4+1 = zﬁ + ¢; to prove that the obtained sets, called alternated Julia
sets, can be connected, disconnected, or totally disconnected verifying the Fatou-
Julia theorem [20, 27] in the case of polynomials of degree greater than two.

Because in this case one deals with a set of two values, ¢; and ¢2, one operates
with “alternations”, not switchings.

As is known, for a complex polynomial P : C — C of degree d = 2, infinity is
a superattracting fixed point. If one denotes by &/ (o) the attraction basin of oo for
the polynomial P, A(co) = {z € C|P™ — oo}, then the filled Julia set of P is the
set K = C\ &7 (c0). The boundary of the filled Julia set is called the Julia sef, where
chaotic dynamics occur.

The connectivity properties of the Julia set are in arelationship with the dynamical
properties about its finite critical points (Fatou-Julia Theorem [20, 271): The Julia
set is connected if and only if all the critical orbits are bounded; and the set is tofally
disconnecied, a Canlor sel, if (bul nof only if) all the crilical orbils are unbounded.
In [9, 38], the theorem was completed as follows: For a polynomial with at least one
crifical orbif unbounded, the Julia sel is lolally disconnected if and only if all the
bounded critical orbils are aperiodic.

The alternated Julia sets K., ., are the set of points in the complex plane with
bounded orbits when one iterates the alternated system

z% + 1, neven,

P D In4l =
S A zﬁ 4+ o, nodd.

The generated orbit is

ZO’
1 = Z% + 1,
2 2
2= (z5+ca) + e,

2
3 = ((Z% + 61)2 + 62) +ci,
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In a similar way one can be define the alternated filled Julia set K., ., which has
the same shape with the alternated filled Julia set K., .,, as being the set of points in
the complex plane with bounded orbits when one iterates the alternated system

z2 + ¢y, 1 even,

Pczc1 Siptl = { Z% S, ol

In [17], it is proved that the alternated Julia sets verify the Fatou-Julia theorem in
the case of complex polynomials of degree greater than two.

As known, the Julia set is totally disconnected if ¢ does not belong to the Man-
delbrot set [7, 8, 32]. However, in [17] it is proved that the alternated Julia sets
can be connected, disconnected or totally disconnected. Because the totally discon-
nected sets, disconnectedness sets and connected form a four-dimensional body (it
depends on four real variables: Re(cy 2) and Imi(cy 2)), to study computationally the
connectivity problem, one has to fix some of these variables, and scroll the others
within some domain. In other words, to obtain a three-dimensional views (of the
four existing objects), one has to slice the four-dimensional body with one of the
four planes Re(c1,2) = cf, Im(c1,2) = cf (see the volume rendering [19, 31] in
Fig.10.8, where a three-dimensional view is obtained by sectioning the body with
the plane Im(c1) = 1). To obtain two dimensional views, two planes sections (slices)
are necessary.

Fig. 10.8 Three- []] Totally disconnected
dimensional view of the _ M Disconnected
connectivity body of the Slice Im(c,)=1.0 M Connected

alternated Julia sets,
obtained with the section
with Imi{cq) = 1. The withe
region (body’s exterior)
indicates the points for
which the alternated Julia
sets are totally disconnected,
the blue regions indicate the
disconnectedness while the
red regions the
connectedness

~

1|

Mandelbrot
sel

Re(c,)

| T TN A N WA O O N O |

~
3
¥

For example, if one considers the planar section witheo = —0.15624-1.0320¢ and
c1 £ [—0.176, —0.136] x [1.012, 1052] (Fig. 10.9 a), the filled Julia set correspond-
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[ Totally disconnected -
W Disconnected (h) £ivs
W Connected

gy 3

1.052,
(a) c, =-0.1562+1.0320i

Im(c,)

1.012]

-0.176 -0.136

Re ()

Fig. 10.9 a Section through the three-dimensional body, obtained by altemating Tulia sets with
cg = —0.1562 + 1.0320¢ and ¢ € [—0.176, —0.1358] x [1.012, 1052]; b Totally disconnected
filled Julia Julia set corresponding to ¢ = —0.1562 + 1.03201; ¢ Connected alternated filled Tulia
set corresponding to the point A; d Disconnected alternated Tulia set corresponding to the point B
e Totally disconnected alternated Julia set corresponding to then point &

ingto ¢z = —0.1562 + 1.0320i is a totally disconnected set (Fig. 10.9 b), while the
alternated Tulia sets for ¢ = —0.1562 + 1.0320i and ¢, considered in the connected
region (point A) is aconnected set (Fig. 10.9 ¢), for ¢; = —0.1562 4+ 1.0320i and ¢4
considered in the disconnected region (point B) is a disconnected set (Fig.10.9 d),
and for ¢5 = —0.1562 + 1.0320i and ¢ considered in the white region (point C) is
a totally connected set (Fig.10.9¢e).

Remark 10.2 Representing graphically the three-dimensional connectivity bodies, a
remarkable property was revealed in [17]: as known, the Mandelbrot set is the set of all
¢ values for which each (classical) Julia set is connected. However, the “ends” of the
three-dimensional body shown inFig. 10.8, indicate a new and intrigning property: it
is the set of all parameter values, for which each corresponding alternated Julia set is
disconnected form Mandelbrot sets (the blue points in Fig. 10.9 a). By using special
algorithms to draw fractals, one can prove that the apparently separated parts (dots) of
connectivity and disconnectivity are in reality connected to their body [35, Chap.4].

10.3 Conclusion

In this chapter, we have presented the approach of a generalization of Parrondo’s
game, implemented for both continnous-time and discrete-time systems, via the
PS algorithm. Thus, by applying the PS algorithm, the forms of Parrondo’s para-
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dox game read chaos; + chaosy + ... + chaosy = order, for N = 2, or
orderi+ordera—+...‘ordery = chaos, acting like chaos-control like or anticontrol-
like behaviors. Also, combinations of ordered and chaotic motions can lead to chaos-
control like and anticontrel-like results. These generalizations of Parrondo’s game,
applied as chaos control or anticontrol schemes have been used here to Lorenz sys-
tem, Chen systems of integer and fractional order, the logistic map, and also fractals
(alternated Julia sets). While for the continuocus-time systems, the convergence of
the PS algorithm has been proved analytically, but for the fractional-order systems,
the convergence has been verified only mumerically. Also, for the logistic map, the
PS algorithm generates different orbits from the existing orbits, Parrondo’s paradox
has been implemented to realize chaos control and anticontrol. The apparently para-
doxical result obtained with the PS algorithm applied to continuous systems, resides
in the linearly dependence on the parameter p in the underlying IVP. Although this
particularity seems to be restrictive, it characterizes most-known continuous sys-
tems. One of the most interesting new propetty, revealed by the PS algorithm, is the
fact that the Mandelbrot set seems to be not only the set of all complex points for
which the Julia sets are connected, but also the set of all complex points for which
the alternated Julia sets are disconnected. With the PS algorithm, every attractor of
a considered system can be generated (approximated), but due to some objective
reasons, one cannot set some parameter values. The PS algorithm can be used as
a possible explanation of the strange dynamics of some systems where switchings
between the underlying dynamics occur, either periodically or randomly.
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