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Abstract

In this paper the anti-control technique of chaos to systems continuous with re-
spect to the state variable using a time-delay feedback technique introduced by
Wang, Chen and Yu, is adapted to a class of dynamical systems discontinuous with
respect to the state variable. The considered discontinuous initial value problem is
transformed into a di¤erential inclusion using the Filippov regularization. Then,
certain results on existence and uniqueness of solutions to di¤erential inclusions are
used to de�ne our class of discontinuous dynamical systems. Afterwards, introduc-
ing an adequate concept of derivative for the considered discontinuous functions,
we show that the algorithm for continuous dynamical systems can be adapted to
our class of discontinuous problems. Three examples are given.
Keywords: Filippov regularization; di¤erential inclusions; switch dynamical

systems; generalized derivative; chaoti�cation.



1 Introduction

Chaos can become very useful under circumstances. For example, it is im-
portant in the biological systems as human brain [Freeman, 1995], heartbeat
regulation [Brandt and Chen, 1997], liquid mixing [Ottino et al., 1992], reso-
nance prevention in mechanical systems [Georgiu and Schwartz, 1999], secure
communications [Hasler and Schimming, 2000] etc.
Therefore, besides the control of chaos (see the pioneering work of Ott

et al. [1990]), a natural, yet non-trivial question, is the anti-control i.e.
whether one can make a given system chaotic or enhance the existing chaos
of a chaotic system by using small control (see e.g. [Chen and Dong, 1993,
Chen and Dong, 1998, Kastner-Maresch and Lempio, 1993, Lakshmanan
and Murali, 1996, Shinbrot et al., 1993]). Several mathematically rigorous
anti-control algorithms for discrete and continuous dynamical systems, were
developed by Chen and collaborators (see e.g. [Chen and Lai, 1996] and
[Chen and Lai, 1998]). Note that the continuity concept could refers both
the time and state variable. Here, by dis/continuous dynamical systems we
mean systems dis/continuous with respect to the state variable.
Di¤erential equations with discontinuities with respect to the state vari-

able modeling dynamical systems (d.s) occur in many real problems and are
widely used as simpli�ed mathematical models of physical systems although
the initial value problems (i.v.p.) need not have any classical solutions.
Hence, sometimes physical laws are expressed by discontinuous functions,
for example, a discontinuous dependence of the friction force on the velocity
in the cases of dry friction, brake processes with locking phase, oscillating
systems with combined dry and viscous damping, elasto-plasticity, electrical
circuits, forced vibrations, convex optimization, control synthesis of uncer-
tain systems etc. (see e.g. [Popov, 1962, Popp and Stelter, 1990, Wiercigroch
and de Kraker, 2000] and the references therein).
The discontinuous functions we consider in this paper are piece-wise con-

tinuous (see [Filippov, 1988]), i.e. functions continuous on a �nite number
of open domains Di � Rn; i = 1; :::; p in each of which the functions being
continuous up to the boundary, and having �nite (possible di¤erent) limits
from di¤erent boundary points (bounded discontinuities). The set of zero
measure M = Rnn [pi=1 Di contains the boundaries of Di and represents
the set of discontinuity points of f . This class of i.v.p. can be modeled by
the following autonomous i.v.p.
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_x(t) = f (x(t)) := g (x(t)) +
nX
i=1

�i sgnxi(t) ei; (1)

x(0) = x0; t 2 I = [0; 1) ;

where g : Rn ! Rn is a vector-valued function continuous with respect to
the state variable, �i 2 R , and ei denote the i-th canonical unit vectors
in Rn.
Since the system is autonomous, we can assume, without loss of generality,

that the initial condition is given at t = 0 . The restriction to autonomous
problems is not restrictive: one can introduce a new variable xn+1 satisfying
:
xn+1 = 1 and xn+1(t0) = t0.
Due to the right-hand side discontinuity, the i.v.p. (1) need not have any

solutions and another concept of solution must be used.

Example. Consider the suggestive example of discontinuous right-hand side
equation [Filippov, 1988]

:
x = 1� 2 sgn (x);

which has, for x 6= 0 , the classical solutions

x(t) =

�
3 t+ C1;
�t+ C2

x < 0
x > 0

; C1; C2 2 R :

As t increases, these solutions tend to the line x = 0, but it cannot be
continued along this line (the function x(t) = 0 does not satisfy the equation
in the usual sense).

Our �rst goal is to �nd the assumptions on g on which the i.v.p. (1) de�nes
a d.s. For this purpose, a de�nition of d.s., using the existence and optionally
the uniqueness, will be used. Due to the possible lack of solutions, the Cauchy
problem (1) is transformed into a di¤erential inclusion (d.i.) using the well
known Filippov regularization [Filippov, 1988]. Enjoying enough regularity,
the obtained d.i. may have several generalized solutions.
The mathematical background of the i.v.p. (1) can be found in [Danca,

2002a,b and c]. In [Danca and Codreanu, 2002] the i.v.p. was treated using
a continuous approximation of the discontinuity.
Next, a generalized concept of derivative for our class of functions, is

introduced and the anti-control technique of chaos for continuous systems,
proposed by Wang, Chen and Yu [Wang et al., 2000], which uses the modern
geometric theory of nonlinear control (see e.g. [Isidori, 1995] or [Sastry,
1999]), is adapted to our class of i.v.p. (1).
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The paper is organized as follows. Section 2 treats the assumptions under
which the i.v.p. (1) models a switch d.s. For this purpose the existence of
solution to the i.v.p. (1), the Filippov regularization used to transform the
i.v.p. into a d.i., and the explicit Euler method for d.i. is presented. Sec. 3
presents a special derivative for the right-hand side of the i.v.p. (1) and the
anti-control technique and in Sec. 4 three applications are presented.

2 Switch dynamical systems

Next, a few notions necessary to de�ne our class of discontinuous d.s. are
presented (details can be found in [Danca, 2002a and c]).

De�nition 2.1. A single-valued function f : Rn ! Rn satis�es a growth
condition on Rn if there exist constants K1; K2 � 0 with

kf (x)k � K1 kxk+K2;

for all x 2 Rn.
All the practical examples found by us can be obviously veri�ed to satisfy
the growth condition.
Because of the lack of the solutions to i.v.p. (1) we restart the i.v.p. into a
set-valued one

:
x 2 F (x); x(0) = x0; for almost all t 2 I ; (2)

where F : Rn � Rn is a set-valued function which can be de�ned in several
ways. For our class of functions f , de�ned in (1), the simplest convex
de�nition of F is obtained by the so-called Filippov regularization [Filippov,
1988]

F (x) =
\
">0

\
� (M)=0

conv f ((x+ "B)nM) ; (3)

where B is the unit ball in Rn, � is the Lebesgue measure and conv is the
closed convex hull. In the points where the function f is continuous, F (x)
consists of one point which coincides to the value of f at this point. In the
discontinuity points, the set F (x) is given by (3).
As an example the Filippov regularization applied to sign function gives us
the set-valued function

Sgn (x) =

8<:
f�1g x < 0
[�1; 1] x = 0
f+1g x > 0

;
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Applying the Filippov regularization to the i.v.p. (1) this becomes

:
x 2 F (x) = g(x) +

nX
i=1

�iSgn (xi) e
i; (4)

x(0) = x0; for almost all t 2 I:

De�nition 2.2. A generalized (Filippov) solution to i.v.p. (1) is an absolute
continuous function x : I!Rn satisfying the di¤erential inclusion (4) almost
everywhere in I .

The existence theorem for di¤erential inclusions is a Péano theorem and
can be found in many works and various forms (see e.g. [Aubin and Cellina,
1984, Aubin and Frankowska, 1990, Kastner-Maresch and Lempio, 1993].
The proof for the general case of a di¤erential inclusion can be found in e.g.
[Aubin and Cellina, 1984] and for the i.v.p. (4) in [Danca, 2002a or Danca
2002c].

Example. Let consider the discontinuous i.v.p.
:
x = sgn (x), x(t0) = 0.

There is no classical solution starting from 0. However, considering the cor-
responding set-valued i.v.p.

:
x 2 F (x) = Sgn (x), x(t0) = 0, there are

multiple Filippov solutions: x(t) = 0 for t � t0 and x(t) = �(t � t0) for
t > t0, where t0 � 0.

Remark 2.1. In [Danca, 2002a,c] it is proved that the uniqueness of the
solution to the general i.v.p. (4) is veri�ed if g is Lipschitz continuous and
all the coe¢ cients � are negative.
For our class of functions f de�ned in (1) , the positiveness of some �k
seems to be adequate for non-uniqueness . In [Filippov, 1988, p. 50] there
are presented geometrical proofs to study the uniqueness.

Example The set-valued i.v.p.
:
x 2 �Sgn (x), x(0) = x0, has a unique

generalized solution . Hence, for x0 > 0, the solution is x(t) = x0 � t, for
t < x0 and x(t) = 0, for t � x0 and the corresponding trajectory, starting
from x = 0 , can be continuously extended for t � x0. If x0 < 0 then
x(t) = �x0 + t for t < x0 and x(t) = 0 for t � x0.
Using the above concepts and results, we can introduce the following

de�nition which states the conditions under which the i.v.p. (1) de�nes a
discontinuous switch d.s.
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De�nition 2.3. The i.v.p. (1) is said to de�ne a generalized switching d.s.
on Rn if for every x0 2 Rn there exists a solution of the i.v.p. de�ned for
almost all t 2 I. If the solution is almost everywhere unique, then the i.v.p.
is said to de�ne a switch d.s.

In [Danca, 2002a,c] it is proved that if g is continuous and veri�es a
growth condition then the i.v.p. de�nes a generalized switch d.s. and if sup-
plementary is Lipschitz continuous and all the coe¢ cients � are nonpositive
then the i.v.p. de�nes a switch d.s.
In [Danca and Codreanu, 2002] the class of i.v.p. (1) was treated using

the approximate selection Theorem [Aubin and Cellina, 1984, Aubin and
Frankowska, 1990].
In order to simulate the dynamics of the switch d.s. and to apply the

anti-control algorithm, a numerical method for d.i. is necessary. Di¤erence
methods for d.i. are presented in many references (see e.g. [Dontchev and
Lempio, 1992, Lempio, 1995, Kastner-Maresch and Lempio, 1993]). Here, we
consider the classical explicit Euler method.
Consider the i.v.p. (2). Let N be a natural number N 2 N 0 � N,
N 0denoting a subsequence of N tending to in�nity, the integration step-size
h = (T � t0)=N and an equidistant grid

t0 < t1 < ::: < tN = T:

We associate to (2) a sequence of discrete-time inclusions in the form

yk+1 2 GNk (h; yk) ;
k = 0; 1; :::; N � 1; y0 = x0;

(5)

where GNk : [t0; T ] �Rn� Rn are discrete-time set-valued maps. A solution
of (5), for a given step-size h, is any sequence of N +1 vectors y0; y1; :::; yN ;
satisfying (5) for k = 0; 1; :::; N �1. The main problem is to de�ne a family
of mappings GNk such that the solutions of the problem (5) approximate in
some sense the solutions of the original problem (2). For the explicit Euler
method the set-valued map GNk is

GNk (h; yk) = yk + hF (tk; yk) : (6)

The convergence theorem for the general case of i.v.p. (2) can be found e.g.
in [Filippov, 1988, Theorem 1, pp.77], [Aubin and Cellina, 1984, Lemma 1,
pp. 99], [Aubin and Frankowska, 1990, Theorem 10.1.3, pp. 390], or in the
paper Lempio, 1995], and for our i.v.p. (4) in [Danca, 2002c].
Since in general the solution of the inclusion (5) is not unique, the main

problem is to reasonably choose yk+1 of GNk (h; yk) at each step of the
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discrete system. Therefore yk+1 could be selected randomly, as in our
numerical examples (see [Dontchev and Lempio, 1992] and [Kastner-Maresch
and Lempio, 1993] for selection strategies). If the solution is unique, the
whole sequence of approximations converges to this solution.
The maximal existence interval [t0; 1) is obtained for the existence of

both generalized and numerical solutions of (1).
All drawings in this paper were obtained with forward Euler method (5)-

(6), using a Turbo Pascal code.
The considered class of discontinuous functions are ideally suited for elec-

tronic implementations because they can be accurately represented by resis-
tors, capacitors, diodes and operational ampli�ers (see e.g. [Sprott 2000]).

Example 2.1. Let us consider the following switch problem which models a
generalization of the Chua circuit [Brown, 1993], [Yalcin et al. 2002] analyzed
in [Danca 2002b]

:
x1 = �2:57x1 + 9x2 + 3:86 sgn (x1)
:
x2 = x1 � x2 + x3
:
x3 = � � x2

; (7)

� > 0 being the control parameter. Here, the set of discontinuity points
belongs to the surface given by the equation x1 = 0. The i.v.p. has no
global classical solution on [0; 1) . The Filippov regularization gives us
the following d.i.

:
x1 2 �2:57x1 + 9x2 + 3:86Sgn (x1)
:
x2 = x1 � x2 + x3
:
x3 = � � x2

; (8)

with the corresponding set-valued function

F (x) =

0@ �2:57x1 + 9x2
x1 � x2 + x3
� � x2

1A+ 3:86Sgn (x1) e1
The i.v.p. de�nes a generalized switch d.s. because the function g(x) =

(�2:57x1 + 9x2; x1 � x2 + x3; � � x2 )T is linear and the solution is not
unique (the nonuniqueness is proved in [Danca 2002c]). A chaotic trajec-
tory, for � = 15:7 , (phase portraits and time series) is presented in Figs. 1
a, b. The chaotic behavior can be observed too from the Poncaré section with
the plane x2 = 0:1 (Fig.1 c), and in the bifurcation diagram of the phase
variable x3 versus the control parameter � (Fig.1 d). In [Danca, 2002a] a
Simulink (Matlab) scheme, which enables to obtain several informations on
the system, is presented.
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Remark. i) Chaos in uncontrolled switch d.s. will be understood in one of
the classical senses, e.g. positive Lyapunov exponents, eventually with sup-
plementary tools as bifurcation diagram (see e.g. [Brown and Chua, 1996]),
while the chaos induced by the anti-control algorithm, will be understood in
the sense of Li-Yorke [Li and Yorke, 1975] ( �period three implies chaos�),
or Marotto [Marotto, 1978] for higher dimensional state spaces. In [Wang
et al., 2000] an asymptotically approximate relationship between the time-
delay equations (which appears in the anti-control algorithm), and di¤erence
equations is established.
ii) It can be easily proved that the equilibrium points of switch dynamical
systems does not belong to the discontinuity surfaces.

Example 2.2. Let consider the following system which is a simpli�ed model
of the regulation systems of a steam turbine [Belea, 1983]

:
x1 = a (x3 � x1 � sgn (x1))
:
x2 = x1 � x2
:
x3 = � x2; a > 0

: (9)

Again g is continuous and veri�es a growth condition. The system is a
switch d.s. the solution of i.v.p. being unique (see Remark 2.1). The periodic
behavior (hysteresis like motion for a > 0), is plotted in Fig.2.

Studying practical examples, we have observed that generally the unique-
ness of the solutions in the cases of switch d.s. seems to imply a strong
stability to the system for a wide range of the control parameters. In this
meaning, chaos, if it does exist, is very frail.

Example 2.3. The following problem is a discontinuous variant of the
chaotic d.s. presented in [Aziz-Alaoui and Chen, 2002] and models a gener-
alized switch d.s.

:
x1 = a (x2 � x1)� 0:5 sgn (x1)
:
x2 = x1 (c� a� x3) + c d x2 + 0:5 sgn (x2)
:
x3 = �x2x1 � b x3 + 3 sgn(x1)

: (10)

A chaotic trajectory, obtained for a = 1:18; b = 0:168; d = 0:1 and the
control parameter c = 7, is plotted in Figs. 3 a,b. The Poincaré section
(with the plane x3 = 10) and the bifurcation scenario plotted in Figs. 3 c,d
show the chaotic behavior.
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3 Anti-control of chaos

Since the classical derivative cannot be used to our class of functions, a new
concept will be introduced (Danca, 2002b]).

Let Di be open subsets of Rn, for i = 1; 2; :::; p, such that Rn =
pS
i=1

Di

and let f : Rn ! Rn be a real single-valued function.

De�nition 3.1. Let f be di¤erentiable on
pS
i=1

Di. We say that f is

generalized di¤erentiable at x� 2 Rn if the following limits exists and is
�nite

D f (x�) := lim
x!x�

f 0(x); x 2
p[
i=1

Di: (11)

D f (x�) will be called the generalized derivative of f at x�. We say that
f is generalized di¤erentiable on Rn if it is so at every x� 2 Rn.
A higher order generalized derivative at x� 2 Rn can be easily recursively
de�ned

D (m) f (x�) = D(D(m�1) f (x�)) =
lim
x!x�

f (m�1)(x); x 2
pS
i=1

Di
; (12)

if f is di¤erentiable of order m� 1, m � 1 on
pS
i=1

Di, and the limit (12)

exists and is �nite.

Notation 3.1. We denote the class of functions f having generalized
derivatives of order m on Rn by Cm.

Example Let us consider the function

f (x) = x� 2 sgn (x) :
Here D1 = (�1 ; 0) and D2 = (0; 1). In the discontinuity point x� = 0,
we have Df (0) = lim

x!0
f 0(x) = 1 ( Fig.4).

It is easy to check the following proposition.

Proposition 3.1. Let consider the i.v.p. (1) with g 2 Cm [Rn] ; m � 1 .
Then f 2 Cm and
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D (m) f (x�) = g(m)(x�); x� 2 Rn:
In [Danca, 2002b] the class of switch d.s. (1) with f 2 Cm was used to
synchronize switch d.s.
In order to adapt the anti-control algorithm for continuous d.s. presented

in [Wang et al., 2000] to switch d.s. let us consider �rst the a¢ ne and
autonomous d.s. with no output

:
x = f (x) + h(x)u; (13)

where f is de�ned in (1) g and h are smooth functions on Rn and u 2 R
is either a system parameter perturbation or an exogenous control input.
Next, smooth will mean an large enough times (generalized) di¤erentiable
function. We want now to �nd if it is possible to determine a smooth nonlin-
ear function l (system output) satisfying l (0) = 0, such that the following
nonlinear autonomous SISO (Single-Input Single-Output) d.s.

:
x = f (x) + h (x)u
y = l (x) ;

(14)

drives chaotically (even if the uncontrolled system is nonchaotic).
Let x� be an asymptotically stable equilibrium point of the uncontrolled
system (u � 0). In order to design a feedback controller, u(t), such that the
behavior of the controlled system (13) becomes chaotic within a neighborhood
of x�, the di¤erential geometric control theory ([Isidori, 1995, Sastry, 1999])
is applied to the d.s. (14).
A system with time-delay is inherently in�nite dimensional, and is able

to have complicated behavior such as bifurcations and chaos.
One of the simplest choice of u (which clearly is not unique) for which the
system becomes chaotic in the rigorous mathematical sense of Li and Yorke
[Li and Yorke, 1975] would be

u(t) = " sin (� l (x(t� �))) : (15)

where " is the maximum amplitude of the control input u, (ju (t)j � "; 8 t �
0 ) , � > 0 is a time-delay and � is a positive control parameter.
In order to �nd l we need �rst some auxiliary results.
The Lie derivative of the smooth function l, with respect to a function f ,
is de�ned recursively

Lf l (x) =
@
@ x
l (x)T f (x)

Lif l (x) = Lf
�
Li�1f l (x)

�
=�

@
@ x

�
Li�1f l (x)

� �T
f (x); i > 1:
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The Lie bracket of two smooth functions h1 and h2, is de�ned recursively
as follows

adh1h2(x) =
@
@ x
h2(x)h1(x)� @

@ x
h1(x)h2(x)

ad ih1h2(x) = adh1
�
ad i�1h1

h2(x)
�
=

@
@ x

�
ad i�1h1

h2(x)
�
h1(x)� @

@ x
h1(x) ad

i�1
h1
h2(x); i > 1:

De�nition 3.2. Let f1; f2; :::; fm smooth functions. The linear span of
these functions

� := span ff1(x); f2(x); :::; fm(x)g ;
de�ned on an open subset of Rn, is said to be involutive if for � 1(x); � 2(x) 2
� we have ad�1� 2(x) 2 �.
De�nition 3.3. The d.s. (14) is said to have a relative degree r at x� if
there exists a neighborhood D of x� such that

(i) LhL
k
f l (x) = 0; 0 � k < r � 1;

(ii) LhL
r�1
f l (x) 6= 0; for all x 2 D :

The main mathematical tool used to �nd u is the following lemma

Lemma 3.1. ([Isidori, 1995, Sastry, 1999]) The d.s. (14) has relative degree
n at x� if and only if there exists a neighborhood D of x� such that

(i) rank
�
h(x); adf h(x); :::; ad

n�1
f h(x)

�
= n

for all x 2 D;
(ii) span

�
h(x); adf h(x); :::; ad

n�2
f h(x)

	
is involutive in D :

In this case, the system output y = l (x) is a solution of the set of n� 1
�rst order linear partial di¤erential equations

@

@ x
l (x)

�
h (x); adf h (x); :::; ad

n�2
f h (x)

�
= 0 : (16)

Let now consider the i.v.p. (1). Then we have the following theorem

Theorem 3.1. Let the i.v.p. (1) with g 2 Cm [Rn] verifying the growth
condition and x� be an asymptotically stable equilibrium point of the non-
controlled system. Then the switch d.s. can be drive chaotically if and only
if the system has the relative degree n .
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Proof. Using the generalized derivative we obtain @ f (x)
@ x

= @ g (x)
@ x

and Lemma
3.1 can be used. Hence, if the conditions i and ii hold, the small-amplitude
time-delay feedback (15) can be used to create or enhance the chaos. �
Remark 3.1. i) There are cases where the neighborhood D can be chosen
so that it contains several equilibrium points, which in the case of switch
d.s. are separated by the discontinuity surfaces. Then, under the anticontrol
algorithm, the underlying separated attractors could merge, for certain values
of " , � and � , into a scroll chaotic attractor.
ii) If the (generalized ) switch d.s. contains in a neighborhood D only
a single stable equilibrium point, then the d.s. is in fact a smooth one in
this neighborhood and the classical derivative can be used. If in D there
are several stable equilibrium points separated by the discontinuity surfaces,
then the generalized derivative near these surfaces is necessary.
iii) The conditions i and ii in Lemma 3.1 are the necessary and su¢ cient
conditions for solutions of (16). While the condition i is more laborious than
ii, the last one is more subtle and we found several cases when this condition
does not holds.

4 Applications

4.1. Let us consider the switch Chua circuit (7) which has the equilibrium
points X�

1;2 (�1:5; 0; �1:5). For � = 23:5 the trajectory tends to one of
the equilibrium points (Figs.1d and 5a). If we denote �(t) = � + � �(t),
(with u = � �), the controlled system becomes

:
x =

0@ �2:57x1 + 9x2
x1 � x2 + x3
� � x2

1A+ 3:86 sgn (x1) e1+
h (x) � � (t) :

with h(t) = (0; 0; �x2)T . The �rst two Lie brackets are

adf h(x) =

0@ 0
x2

�x1 + x2 � x3

1A ;
ad2fh(x) =0@ � 9x2

�x2 + x1 + x3
3:57x1 + (2� � 10)x2 � 3:86 sgn (x1) + x3

1A :
Let denote the matrix A =

�
h(x); adf h(x); ad

2
f h(x)

�
. The rank is three

because jAj = 9x32 6= 0 for all x 2 U , x2 6= 0 where U is a neighborhood
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of one of the �xed points X�
1;2. Hence the assumption i is veri�ed. In

order to verify ii we have adh (adf h(x)) = (0; 0; �2x2)T = �2h(x) ; i.e.
span (h(x); adf h(x)) is involutive for x 2 U; x2 6= 0. Therefore the system
has relative degree three at the equilibrium points and l can be obtained
from the following system of partial derivatives

@
@ x
l (x)h(x) = � @ l (x)

@ x3
x2 = 0

@
@ x
l (x) adf h (x) = 0

@ l (x)
@ x2

x2 + (�x1 + x2 � x3) @ l (x)@ x3
= 0

;

with a solution

y(t) = l (x1(t)) :

Hence, we can take

� � (t) = " sin (� (x1(t� �))) :
If we chose " = 0:6 and � = 40 for the time delay � = 1, the controlled
system reach two separated chaotic attractors; each is near one of the two
originally stable �xed points (Fig.5 b). The obtained chaotic motion can be
deduced too from the Poincaré section with the plane x2 = 0:1 (Fig.5 c)
and bifurcation diagram (Fig.5 d). If we chose " = 1:5 and � = 50, then
for � = 1, the two separated attractors merge into one double scroll chaotic
attractor as it is visualized in Fig.5 e (see Remark 3.1 i).

4.2. For c = 11 the system (10) has a periodic motion (Fig.6a). The con-
dition i hold because rank

�
h(x); adjh(x); ad

2
j h(x)

�
= 3, but the condition

ii does not hold. Therefore the system has not the relative degree three.
Nevertheless, choosing h(x) = (0; d x2 + x1; 0)

T and l given by (16),
l (x) = x21=2� a x3, with a = 1:18; the system can be driven chaotically for
" = 2 and � = 4 (see Figs.6 b, c and d where the phase portraits, time se-
ries, Poincaré section with the plane x3 = 10, and bifurcation diagram were
plotted). This example shows the strength of chaoti�cation induced by the
time-delay control (15). However, when the Lemma 3.1 does not hold, there
are cases when the chaos cannot be induced, as in the following example.

4.3. Let us consider the system (9). Again the condition i is easy veri�ed,
while the condition ii is not checked. In this case, despite our numerical
experiments, the only we found were large size chaotic attractors in the phase
space (of 105� 106 order size) without practical interest . Actually, the at-
tractors are not typical, but some bursts like (see Fig.7 where, the controller
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was chosen to be y (x) = 15 sin (35x2(t� 1)) ). The di¢ cult chaoti�ca-
tion could be here explained by the robustness (structural stability) logically
necessary to this system. Note that the apparent �regular�motion (the hor-
izontal regions in the time representations) contains in fact many corners,
typically for explicit numerical methods for d.i. These probably correspond
to �grazing regions�, i.e. regions in phase planes corresponding to the dis-
continuity surfaces, where the trajectories arrive tangentially. These corners
can be reduced by using numerical methods with high order of consistency.

5 Conclusions

In this paper we presented a class of discontinuous d.s. using some results on
existence and uniqueness of solutions to d.i. Here the d.i. are obtained with
the Filippov regularization. Introducing a special derivative for the class of
problems (1) the anti-control technique of continuous d.s. is applied to our
switch d.s.
It seems that there are practical cases where the anti-control algorithm

can be generally applied even if the system does not have the relative degree
equal to the space phase dimension.
It would be of a real interest to �nd out if there are dynamical systems

(continuous or not) which veri�es Lemma 3.1 proving a strong stability. This
could be another criteria for stability degree.
Note that if the minimum value of ", for which the chaos appears, exceeds

some value, the anticontrol would be not interesting since the underlying
mathematical model changes signi�cantly.
The choose of the time-delay � has not a signi�cant in�uence in the cases

we studied.
The generalized derivative for the class of i.v.p. (1) was proved to be

an ideal tool to introduce other applications of the classical chaos theory for
continuous d.s. to switch d.s. (e.g. the OGY control for chaotic switch d.s.,
which will be a subject for a future paper).
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Fig.1 A chaotic trajectory of the generalized switch d.s. for
� = 15:7: a) Phase portraits and time series. b) Three
dimensional view. c) Poincaré section with the plane

x2 = 0:1. d) The bifurcation diagram.
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Fig.2 A periodic motion of the switch d.s. modeled by (9).
The �rst transient steps were omitted.
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Fig.3. A chaotic trajectory of the discontinuous d.s. (10) for
c = 7 : a) Phase portraits and time series. b) Three

dimensional view. Poincaré section with the plane x3 = 10 . d)
Bifurcation scenario.

Fig.4. The graph of the generalized
derivative of the function
f (x) = x� 2 sgn(x):
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Fig.5. a) One of the stable �xed points of the uncontrolled
generalized switch d.s. (7) for � = 23:5: b) A chaotic attractor of
the controlled system, with " = 0:6; � = 40 and time delay � = 1:
c) The Poincaré section. d) Bifurcation diagram. e) The double

chaotic scroll attractor obtained using the anticontrol algorithm for
" = 1:5; � = 50 and time delay � = 1.
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Fig. 6. a) periodic motion of the system (10) for c = 11: b) A chaotic
attractor of the controlled system with

� c(t) = 2 sin (4 (0:5x21(t� 1)� 1:18x3(t� 1))) : c) Poincaré section:
d) Bifurcation scenario.
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Fig. 7. A chaotic motion of the controlled system (9) obtained with
� a(t) = 15 sin (35 (x2(t� 1))) :
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