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Abstract

This paper presents an effective approach to constructing numerical attractors of a general
class of continuous homogenous dynamical systems: decomposing an attractor as a convex
combination of a set of other existing attractors. For this purpose, the convergent Parame-
ter Switching (PS) numerical method is used to integrate the underlying dynamical system.
The method is built on a convergent fixed step-size numerical method for ODEs. The pa-
per shows that the PS algorithm, incorporating two binary operations, can be used to
approximate any numerical attractor via a convex combination of some existing attractors.
Several examples are presented to show the effectiveness of the proposed method.

Keywords: Parameter switching; Continuous-time system; Numerical attractor

1. Introduction

As is well known, due to the intrinsic difficulty or intractability, many studies on non-
linear dynamics rely on numerical analysis. Examples in point include invariant manifolds,
basins of attractions, homoclinic and heteroclinic orbits, Smale horseshoes, and generally
chaotic attractors. The present paper follows this traditional approach to carry out care-
ful and subtle numerical analysis of complex attractors with respect to their structural
composition and decomposition.

For general nonlinear dynamical systems, it is rarely possible to determine their at-
tractors analytically. Therefore, numerical approximations constitute an important and
natural part of a systematic analysis. If the ODEs describing a system have an attractor
A, then the discrete dynamical system generated by some convergent numerical method
can also have an attractor that converges to A [1] (see also [19], which suggests numerical
methods that preserve qualitative properties of ODEs).

A major problem in the interpretation of the numerical results is that, in general, one
cannot conclude the existence of a real attractor close to a numerical attractor [1].
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On the other hand, under a variety of Lipschitz conditions, the Runge-Kutta methods
define discrete dynamical systems. In [7, 8], the asymptotic behavior of the underlying
dynamical system is compared with the asymptotic behavior of its numerical discretization.

The convergence can be studied either for finite-time evolution, when one concerns
the global error, i.e. the study of the distance between the computed trajectory and the
real trajectory, or can be proved for infinite-time evolution, when concerning whether the
trajectories of numerical solutions converge to ω-limit sets of the dynamical system.

Many single-parameter chaotic dynamical systems, such as the Lorenz system, Rössler
system, Chen system, Lotka–Volterra system, Rabinovich–Fabrikant (RF) system, Hindmarsh-
Rose system, Lü system, etc. can be modeled as the following Initial Value Problem (IVP):

ẋ(t) = f(x(t)) := g(x(t)) + pBx(t), x(0) = x0, (1)

where t ∈ I = [0, T ], x0 ∈ Rn, p ∈ R is the control parameter, B ∈ Rn×n a constant matrix,
and g : Rn → Rn a continuous nonlinear function. Because of the autonomous nature of
system (1), hereafter the time variable t may not be explicitly indicated.

An example of dynamical systems modeled by the IVP (1) is the Lorenz system

·
x1 = σ(x2 − x1),
·
x2 = x1(ρ− x3)− x2,
·
x3 = x1x2 − βx3,

where n = 3 with a = 10 and c = 8/3, if one considers p = ρ then system (1) has

g(x) =

 σ(x2 − x1)
−x1x3 − x2
x1x2 − βx3

 , B =

 0 0 0
1 0 0
0 0 0

 .

In this paper one studies, for the first time, the possibility to approximate any numerical
attractor of a given dynamical system depending on a single real parameter via a convex
combination of some existing attractors. For this purpose, one considers a discrete fixed
step-size numerical algorithm, the Parameter Switching (PS) algorithm, which switches the
parameter p within a given finite set of parameter values. The algorithm is made on a finite
single step-size convergent scheme for ODEs (here, the Standard Runge-Kutta method).
Because the considered systems, modeled by the IVP (1) are autonomous, the resulting
discrete time dynamical system modeled by the PS algorithm is also autonomous.

The convergence of the PS algorithm is presented in [4] (see also [5, 10]).
The algorithm can be used both for theoretical studies of dynamical systems modeled by

a general class of systems, such as synchronization [13], chaos control and anticontrol, and
as generalization of the Parrondo game (see e.g. [12, 14]). An experimental implementation
shows that the PS algorithm works on real systems as well, e.g. electronic circuits [10].

Also, the PS algorithm can force the system to evolve along a desired attractor which,
for some reasons, cannot be enhanced by setting the parameter with the corresponding
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value p0. Therefore, by switching the parameter with the PS algorithm while the IVP
is integrated within a set of values, the generated attractor approximates the attractor
corresponding to p0 with sufficiently small error. However, the most important property
induced by the PS algorithm is the possibility to express attractors as a convex combination
of other attractors, which will be further explored in this paper.

The paper is organized as follows: Section 2 presents the PS algorithm and his numer-
ical implementation, and in Section 3 attractors decomposition is expressed as a convex
combination of a set of other attractors, while Section 4 presents several examples of the
use of the PS algorithm to attractors decomposition. The Appendix presents a simple
matlab code to implement the PS algorithm. The paper ends with the Conclusion section.

2. The PS algorithm

Throughout this paper, the following assumption is made.

H1 Function f in (1) is Lipschitz continuous.

Under H1, with an admissible initial condition x0 for any p, the IVP (1) admits a
unique and bounded solution.

Let a dynamical system be modeled by the IVP (1), with the initial condition x0
fixed. Denote the set of admissible parameter values by P, and a subset of P with N > 1
parameters pi ∈ R, i = 1, 2, ..., N , by PN = {p1, p2, ..., pN} (Fig. 1 (a)).

In this paper, by attractor one understands the numerical attractor obtained with some
fixed time-step convergent numerical method (see e.g. [6, 7]), after transients are neglected
[20].

Because of the solution uniqueness ensured by the Lipschitz continuity, to each pi ∈ PN

there corresponds a unique attractor Ai ∈ AN = {A1, A2, ..., AN}.
Hereafter, the set PN is considered ordered: p1 < p2 < ... < pN .
Given a suitable set of parameters PN for a given N > 1, by switching periodically the

value of the parameter p within the set PN while the IVP (1) is numerically integrated
with a fixed step-size numerical method for ODEs, the PS algorithm allows to approximate
any attractor of system (1).

Suppose that one intends to generate some attractor Ao, which corresponds to p := p0,
but, it cannot be generated by integrating the IVP with p = p0. There are many reasons
for that in real dynamical systems. Thus, one may choose a set PN = {p1, p2, ..., pN},
with p1 < p0 < pN , such that the attractor A0 can be numerically approximated by the
attractor A∗ generated using the PS method to be introduced bellow.

H2 A fixed step-size h explicit convergent numerical method (here the Runge-Kutta
(RK) method) is used for solving the IVP (1) on the discrete nodes nh, n = 1, 2, ....

For a given step-size h > 0, the PS algorithm can be symbolized with the following
scheme:
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S := [m1 ◦ p1,m2 ◦ p2, ...,mN ◦ pN ]h, (2)

where MN = {m1,m2, ...,mN}, mi ∈ N∗, i = 1, 2, ..., N , denotes the “weights” of the p
values. More precisely, the term mi ◦ pi indicates the number of mi times to specify the
value of parameter p to be pi.

The scheme (2) reads as follows: while the IVP (1) is numerically integrated with the
fixed step-size method, for the first m1 integration steps (i.e. n = 1, 2, ...,m1), p = p1; for
the next m2 steps (i.e. n = m1 + 1,m1 + 2, ...,m2), p = p2; and so on, till the last mN

steps, where p = pN . Next, the algorithm repeats until the entire time integration interval
is covered. The switching period of p, which is piece-wise constant, is

∑N
i=1mih.

For simplicity of notation, hereafter the index h in (2) will be dropped.

The approximation of the attractor A0 with the PS method, using some chosen sets
PN and MN , is obtained based on the following main result of the paper.

Theorem 1. Given the IVP (1), the numerical solution yn, obtained with the PS method,
approximates the numerical solution xn, for n = 1, 2, ..., obtained with p := p0, where

p0 =

∑N
i=1mipi∑N
i=1mi

, (3)

with the global error

en ≤ nh∥B∥∥x0∥
N∑
i=1

mi|pi − p0|+O(h).

Proof. See the proof of the numerical convergence in [4], the proof based on averaging
theory in [2], or the analytical proof in [5].

As can be deduced from the proof presented in [2, 4, 5], the initial conditions for
solutions xn and yn could be different within the same attraction basin.

In the following, the numerical solution obtained with the PS method and the reaching
attractor, denoted A∗, are called switched solution and switched attractor, respectively,
while the solution corresponding to p := p0 and the reaching attractor, denoted A0, are
called averaged solution and averaged attractor, respectively.

Remark 1. For a given N , the scheme (2) is usually not unique: there are several sets
MN and PN which generate the same value of p0 via formula (3), but with different
approximation precision.

The following result can be directly derived from Theorem 1.
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Corollary 2. i) For every given sets PN and MN , the switched attractor A∗ approxi-
mates the averaged attractor A0, denoted A∗ ≈ A0, with p0 given by (3);

ii) For each attractor A of the considered system (1), there exist sets PN and MN ,
N > 1, such that A can be approximated by the PS method.

As an example, suppose that one wants to approximate the stable cycle of the Lorenz
system with the PS method corresponding to p = 93. In this case, the averaged attractor
A0 corresponds to p0 = 93. Let, for example, N = 3. Then, in order to obtain in (3)
p0 = 93, a possible choice is P3 = {86, 95, 97} and M3 = {2, 1, 3}, and the relation (3)
reads p0 = (m1p1 +m2p2 +m3p3)/(m1 +m2 +m3) = 93 with the underlying scheme (2),
S = [2 ◦ 86, 1 ◦ 95, 3 ◦ 97], which generates the switched attractor A∗ as an approximation
of the attractors A0 for p0 = 93.

Remark 2. i) To check supplementarily the numerically match between the switched
and averaged solutions, Hausdorff distance [15] [p. 114] has been utilized with the
result being generally of order 1e− 4, or even smaller, depending on the h value.

ii) The numerical implementation of the PS algorithm requires fixed step-size convergent
numerical methods for ODEs (Standard Runge-Kutta method in this paper). There-
fore, the approximation precision in Theorem 1 depends on the step-size h (see e.g.
[11]). Also, special attention is needed regarding the initial conditions [5, 10].

To verify numerically the match between attractors A∗ and A0, a simple matlab code,
where the PS algorithm uses the Standard Runge-Kutta method, is presented in Appendix
for the particular case of the Lorenz system, which can be easily replaced with any other
system in form (1). The code requires Tmax, h, parameters PN , and weights MN . Using
this code, one can easily test the algorithm performances, by adjusting h, N etc or the
role of initial conditions. The output are the switched vector solution and the averaged
solution.

[y, x] = PS(Tmax, h, [m1,m2, ...,mN ], [p1, p2, ..., pN ], x0, y0).

Let implement numerically the scheme S = [2 ◦ 86, 1 ◦ 95, 3 ◦ 97], used before to ap-
proximate the attractor A0 corresponding to p0 = 93, with h = 0.01, and initial conditions
x0 = [1, 1, 1] and y0 = (1.001, 1.001, 1.001), over the time interval Tmax = 1000. The
command line is

[y, x] = PS(1000, 0.01, [2, 1, 3], [86, 95, 97], [1, 1, 1], [1.001, 1.001, 1.001]).

The results are plotted in Fig. 2. In order to reveal the match between the switched
attractor A∗ (red plot) and the average attractor A0 corresponding to p0 = 93 (blue plot),
the attractors are overplotted in the phase space (Fig. 2 (a)). The match between the two
attractors can also be underlined by overplotting Poincaré sections (here, the cross section
is x3 = 100, Fig. 2 (b)), hystograms (Fig. 2 (c), time series (Fig. 2 (d)).
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Remark 3. The choice of PN and MN to obtain a set value p0 is not unique. Therefore,
for e.g. N = 2, the same attractor A0, with p0 = 93, can be obtained also with the simplest
possible switching (alternating) scheme S1 = [1◦p1, 1◦p2], with, e.g., p1 = 92 and p2 = 94.
Now, the algorithm acts by alternating p, at each step, between p1 and p2. Also, this
attractor can be obtained with the scheme S2 = [3 ◦ p1, 3 ◦ p2], for p1 = 92 and p2 = 94, or
[2 ◦ p1, 2 ◦ p2], for p1 = 91 and p2 = 95.

Chaotic attractors can also be approximated with the PS algorithm. For example,
suppose that one wants to approximate the chaotic attractor corresponding to p0 = 25.5.
Using e.g. the scheme S = [2 ◦ p1, 1 ◦ p2] with p1 = 24 and p2 = 28.5, one obtains
p0 = (2p1+p2)/3 = 25.5. The result, for initial conditions (1, 1, 1) and (1.001, 1.001, 1.001),
is presented in Fig. 3. It should be noted that, contrarily to the regular cases where after
some transients A∗ approaches quickly A0, in the case of chaotic attractors, dependending
on initial conditions the approximation is gradual.

Also, the case of approximating attractive equilibria can be easily implemented. For
example, to approximate the stable equilibrium corresponding to p0 = 10, one can use the
scheme S = [1 ◦ p1, 1 ◦ p2] with p1 = 9 and p2 = 11.

The inherent numerical limitations of the PS algorithm (such as relative large m values,
large distances between values of p within PN or dependence on h) are presented in [11].

3. Attractor properties induced by the PS algorithm within the set AN

The main characteristic of the PS algorithm relies on the convex relation (3)

Proposition 3. p0 is a convex combination of the elements of the set PN .

Proof. By denoting αj = mj/
∑N

i=1mi, j = 1, 2, ..., N , relation (3) becomes

p0 =

N∑
i=1

αipi, (4)

with
∑N

i=1 αi = 1.

Hereafter, unless specified, for simplicity the averaged attractor A0 corresponding to
some value p0 = p which will be approximated, will be denoted Ap.

As seen in Section 2, the stable cycle of the Lorenz system, A93, can be approximated
by the numerical attractor generated, e.g. for N = 3, with P3 = {86, 95, 97} and M3 =
{2, 1, 3}, for which α1 = 2/6 = 1/3, α2 = 1/6 and α3 = 3/6 = 1/2. In this case, the relation
(3) gives, the value p0 = α1p1+α2p2+α3p3 = 93 with the scheme S = [2◦86, 1◦95, 3◦97].

Also, for N = 2, the simplest possible switching scheme is [1 ◦ p1, 1p2], with P2 =
{92, 94}, α1 = α2 = 1/2. Also, A93 can be approximated by the scheme S = [3 ◦ p1, 3 ◦ p2],
with p1 = 92 and p2 = 94, when α1 = 3/6 = 1/2, and α2 = 3/6 = 1/2, or by the scheme
S = [2 ◦ p1, 2 ◦ p2], with p1 = 91 and p2 = 95, when α1 = α2 = 2/4 = 1/2.
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Proposition 4. The sets PN and AN are order isomorphic and the synthesized attractor
A∗ verifies the relation

A1 ≺ A∗ ≺ AN . (5)

Proof. Under Assumption H2, it is natural to assume that there exists a linear (bijective)
order-preserved mapping

H : P → A, A = H(p). (6)

Note that the bijective mapH maps any intervals of the parameter axis P to intervals on the
attractors axis A. Consider the restriction H : PN → AN for PN ⊂ P and AN ⊂ A. To the
interval [p1, pN ], with p1, pN ∈ PN , corresponds the interval [A1, AN ], with A1, AN ∈ PN .
If one considers the set P endowed with the total order <, the induced total order in A,
denoted by ≺, implies that pi < pj if and only if Ai ≺ Aj , for all i, j ∈ {1, 2, ..., N}. Then,
there exists an order isomorphism from (PN , <) to (AN ,≺), such that for every pi and pj ,
i, j ∈ {1, 2, ..., N}, pi < pj if and only if H(pi) ≺ H(pj). Because from (3), p1 < p0 < pN ,
it follows that A1 ≺ A0 ≺ AN and by Corollary 2 i), A1 ≺ A∗ ≺ AN (see Fig. 1 (b) where,
for N = 5, the set PN is represented schematically on the axis of the set of parameters p,
P and AN on the axis of attractors A).

Note that, by the convex relation (3), and from the bijectivity of H, A0 is different
from Ai, i = 1, 2, ..., N .

Next, on the set A, introduce two binary relations (operators) (A,⊕,⊗), with ⊕ being
addition of attractors and ⊗ being multiplication of attractors by positive real numbers.

By Proposition 3 and because H is defined as a general mapping from parameters pi to
the corresponding attractors, the following result presents a way to describe the averaged
attractor.

Corollary 5. For given sets PN and MN , the average attractor A0, corresponding to p0

given by (3), can be expressed as

A0 = α1 ⊗A1 ⊕ . . .⊕ αN ⊗AN . (7)

Proof. A general way of defining ⊕ and ⊗ is

α⊗A := H(αH−1(A)), (*)

and
A1 ⊕A2 := H(H−1(A1) +H−1(A2)), (**)

whenever H−1(A1) +H−1(A2) ∈ P and 0 < α < 1.
Consider 0 < αi < 1, for i = 1, 2, . . . , N , satisfying (4). Then, because H−1(Ai) = pi,

i ∈ {1, 2, . . . , N}, one has

α1 ⊗A1 ⊕ α2A2 ⊕ . . .⊕ αN ⊗AN =

H(α1H
−1(A1))⊕H(α2H

−1(A2))⊕ . . .⊕H(αNH−1(AN )) =

H(α1p1)⊕H(α2p2)⊕ . . .⊕H(αNpN ).
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Next, for pi ∈ PN , αipi ∈ P, H(αipi) ∈ A. Using the relation (**) and because
H−1(H(αipi)) = αipi, for i = 1, 2, . . . , N , one obtains

H(α1p1)⊕H(α2p2)⊕ . . .⊕H(αNpN ) =

H(H−1(H(α1p1)) + . . .+H−1(H(αNpN ))) =

H(α1p1 + . . .+ αNpN ).

Using the expression (4) for p0, one has

α1 ⊗A1 ⊕ α2A2 ⊕ ...⊕ αN ⊗AN = H(p0) = A0.

Note that the decomposition (7) depends only on the inherent numerical errors and not
on PN and MN , or N (see Remark 3) in the following sense: the approximated attractors
A0 are similar for whatever choice of N and the sets PN and MN , up to the inherent
numerical errors.

Besides the commutativity and the associativity of ⊕, properties that can be easily
proved, the following commutativity property is useful for applications.

Proposition 6. For A1, A2 ∈ A and α1, α2 ∈ (0, 1),

α1 ⊗A1 ⊕ α2 ⊗A2 = α2 ⊗A2 ⊕ α1 ⊗A1. (8)

For N = 2, the relation (8) under the PS algorithm means [m1 ◦ p1,m2 ◦ p2] = [m2 ◦
p2,m1 ◦ p1], an equality that can be verified via the code in Appendix. Generalization for
N > 2 also holds and can be verified numerically.

Remark 4. Relation (7) shows that for every attractor A there exists a set AN = {A1, A2, ..., AN}
which could be considered as an “ordered basis”, where A can be decomposed. However,
beside the spanning property, ensured by (7), the set AN must verify linear independency:
for every set AN and set MN , if α1 ⊗A1 ⊕ α2 ⊗A2 ⊕ ...⊕ αN ⊗AN = 0, where 0 can be
considered the empty set, then α1 = α2 = ... = αN = 0. However if all coefficients α are
null, the PS algorithm cannot be applied.

4. Examples

In this section, besides the Lorenz system, examples of the utilization of the PS algo-
rithm to approximate and decompose attractors of three systems are considered.
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� Let the averaged attractor A0 = A93 of the Lorenz system be obtained by the scheme
[m1 ◦ p1,m2 ◦ p2] with m1 = 1, m2 = 1, i.e. α1 = α2 = 1/2, p1 = 92, and p2 = 94.
Then,

1
2 ⊗A92 ⊕ 1

2 ⊗A94
(∗)
= H(12H

−1(A92))⊕H(12H
−1(A94)) = H

(
92
2

)
⊕H

(
94
2

)
:= A

′ ⊕A
′′ (∗∗)

=

H[H−1(A
′
) +H−1(A

′′
)] =

[
H−1

(
H
(
92
2

))
+H−1

(
H
(
94
2

))]
= H

(
92
2 + 94

2

)
= H(93) = A93,

where A
′
, A

′′ ∈ A, i.e.

A93 =
1

2
⊗A92 ⊕

1

2
⊗A94.

� Because the scheme (3) is not unique, A93 can also be obtained with the scheme
[m1 ◦ p1,m2 ◦ p2,m3 ◦ p3] and, therefore, can be decomposed as

A93 = H
(
1
386 +

1
695 +

1
297

)
= 1

3 ⊗H(86)⊕ 1
2 ⊗H(95)⊕ 1

2H(97) =

1
3 ⊗A86 ⊕ 1

6 ⊗A95 ⊕ 1
2 ⊗A97.

Table 1 presents three more examples of systems modeled by the system (1). For
each system, two significant cases are considered: a stable cycle and a chaotic attractor.
Tmax = 1000 for cycles and Tmax = 1500 for chaotic attractors. In order to underline the
efficacy of the PS method, a system with strong nonlinearity (the RF system) is considered.
Also, as is known, the Rössler system presents a Z-shaped slow manifold in its phases space
where the motion is slow until an edge is reached whereupon the trajectory jumps to the
other branch of the manifold [18], representing a good test for the PS algorithm. In addition
to the RF system, where h = 0.001 (see e.g. [17] for the special requirements related to
h, initial conditions, utilized numerical method, parameters used to integrate this system),
for the other systems, h = 0.01. Also, p0 represents the parameter value whose underlying
attractor A0 will be decomposed. The plots represent the superimposed images of the
approximated attractor A0 and the switched attractor A∗. Note that, generally, systems
modeled by (1) allow different choices of p (here, for the Rössler system and the RF system).

� The system modeling a cancer tumor is described by the following equations [16]:

·
x1 = x1(1− x1)− x1x2 − 2.5x1x3,
·
x2 = 0.6x2(1− x2)− 1.5x1x2,
·
x3 = 4.5 x1x3

x1+1 − 0.2x1x3 − px3,

which belongs to the classes defined by the IVP (1) with

g(x) =

 x1(1− x1)− x1x2 − 2.5x1x3
0.6x2(1− x2)− 1.5x1x2

x1x3
x1+1 − 0.2x1x3

 , B =

 0 0 0
0 0 0
0 0 −1

 .
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a) The stable cycle A0.555 can be decomposed with the scheme [2 ◦ 0.198, 2 ◦ 0.302, 1 ◦
0.402, 4 ◦ 0.710, 3 ◦ 0.806] as follows (Table 1, first row):

A0.555 =
1

6
⊗A0.198 ⊕

1

6
⊗A0.302 ⊕

1

12
⊗A0.402 ⊕

1

3
⊗A0.702 ⊕

1

2
A0.806.

b) The chaotic attractor corresponding to A544 with the scheme [1 ◦ 0.535, 1 ◦ 0.553]
can be decomposed in the following form (Table 1, second row):

A0.544 =
1

2
⊗A0.535 ⊕

1

2
⊗A0.553.

� Consider the Rössler system

·
x1 = −x2 − x3,
·
x2 = x1 + ax2,
·
x3 = b+ x3(x1 − p),

with a = b = 0.1. Note that p could also be chosen to be a.

g(x) =

 −x2 − x3
x1 + 0.1x2
0.1 + x1x3

 , B =

 0 0 0
0 0 0
0 0 −1

 .

a) Consider the stable cycle A8.5. With the scheme [2◦8.28, 1◦8.41, 2◦8.540, 3◦8.65],
the attractor can be decomposed in the following form (Table 1, third row):

A8.5 =
1

4
⊗A8.28 ⊕

1

8
A8.41 ⊕

1

4
⊗A8.54 ⊕

3

8
⊗A8.65.

b) A chaotic attractor corresponding to p = 18 can be generated with the scheme
[1 ◦ 17, 1 ◦ 19] and decomposed as (Table 1, 4th row):

A18 =
1

2
⊗A17 ⊕

1

2
⊗A19.

� The RF system [17], with extremely rich dynamics,

·
x1 = x2(x3 − 1 + x21) + ax1,
·
x2 = x1(3x3 + 1− x21) + ax2,
·
x3 = −2x3(p+ x1x2),

where a = 0.1. Note that p could also be a.
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Now,

g(x) =

 x2(x3 − 1 + x21) + 0.1x1
x1(3x3 + 1− x21) + 0.1x2

−2x1x2x3)

 , B =

 0 0 0
0 0 0
0 0 −2

 .

a) A stable cycle A0.265 can be obtained with the scheme [1 ◦ 0.2615, 2 ◦ 0.2642, 3 ◦
0.2667], with decomposition (Table 1, 5th row)

A0.265 =
1

6
⊗A0.2615 ⊕

1

3
⊗A0.2642 ⊕

1

2
A0.2667.

b) The chaotic A0.2715, which is hidden [17], with the scheme [1 ◦ 0.2714, 1 ◦ 0.2716],
has the following decomposition (Table 1, 6th row):

A0.2715 =
1

2
⊗A0.2714 ⊕

1

2
A0.2716.

Conclusion and discussion

In this paper, it is shown that the PS algorithm allows to numerically approximate
attractors of systems modeled by the IVP (1). The algorithm is useful especially for
practical problems, when some parameter values cannot be directly determined. With
the PS algorithm, one can approximate any desired unknown attractor. Based on the PS
algorithm, the attractors can be expressed as a convex combination of a set of some existing
attractors.

Depending on the type of attractors Ai ∈ AN , i = 1, 2, ..., N , the attractor A0 can be
decomposed as a function of either chaotic attractors, regular attractors, or regular and
chaotic attractors, and the decomposition (7) can be used to generalize Parrondo’s paradox.
For example, because for the values of the set P3 = {86, 95, 97}, the Lorenz system evolves
chaotically. If one denotes with chaosi, i = 1, 2, 3, the behaviors corresponding to P3,
and with order the generated motion corresponding to p0 = 92, generated with the PS
algorithm, then by the scheme S = [2 ◦ 86, 1 ◦ 95, 3 ◦ 97], one obtains

order =
1

3
⊗ chaos1 ⊕

1

6
⊗ chaos2 ⊕

1

2
⊗ chaos3.

For N = 2, the relation (7) can be viewed as a generalization of Parrondo’s paradox,
winning = losing + losing, if one replaces winning with order and chaos with losing, or
also as a control-like algorithm induced by the PS method. The reverse form obtained with
the PS algorithm, chaos = order1 ⊕ order2, is an anticontrol-like algorithm (see [12, 14],
where generalizations of Parrondo’s game obtained with the PS algorithm are presented).
The quantities αi, i = 1, 2, 3, in (7) could be considered as weights like of the attractors in
the decomposition of A0.
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Further studies will be focused on reducing the approximation errors, e.g. by using
other more accurate fixed step-size numerical schemes for solving ODEs. Studying the
applicability of the PS algorithm to other more general classes of systems will be another
interesting task.

In this paper, the focus is on periodic PS, but one could also study quasi-periodic PS
for instance with pi = cαi for a positive constant c, irrational α and {.} is the fractional
part function.

Another approach is to generate pi by a function pi+1 = g(pi) for a continuous function
g : [0, 1] → [0, 1], for instance a logistic map i.e. a skew-product discrete system.
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Appendix

Matlab code for the PS method

1 function [y,x]=PS(Tmax ,h,M,P,x0 ,y0)

2 %Input:

3 %Tmax: integration interval;

4 %h: step -size;

5 %M: weights;

6 %P: parameterS set;

7 %x0 , y0 initial conditions of A^0 and A^* (column vectors);

8 %Note that lenght(M)=lenght(P)=N;

9 %Output:

10 %y: A^0 vector;

11 %x: A^* vector;

12 %Example:

13 %[y,x]=PS

(500 ,0.001 ,[2 ,1 ,3] ,[86 ,95 ,97] ,[1;1;1] ,[1.001;1.001;1.001]);

14
15 n=round(Tmax/h);

16 x=zeros(3,n);%3 is the system dimension in the phase space

17 y=zeros(3,n);

18
19 %Switched attractor A^*

20 i=1;j=1;
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21 l=length(P);

22 y(:,1) = y0;

23 while j<n

24 for k=1:M(i)

25 K_1 = h*f(y(:,j),P(i));

26 K_2 = h*f(y(:,j) + 1/2*K_1 ,P(i));

27 K_3 = h*f(y(:,j) + 1/2*K_2 ,P(i));

28 K_4 = h*f(y(:,j) + K_3 ,P(i));

29 y(:,j+1) = y(:,j) + 1/6*( K_1 + 2*K_2 + 2*K_3 + K_4);

30 j=j+1;

31 end

32 i=mod(i,l);

33 i=i+1;

34 end;

35
36 %Average attractor A^0

37 p1=cumprod ([M;P]);

38 p0=sum(p1(2,:))/sum(M);%p^0

39 j=1;

40 x(:,1) = x0;

41 while j<n

42 K_1 = h*f(x(:,j),p0);

43 K_2 = h*f(x(:,j) + 1/2*K_1 ,p0);

44 K_3 = h*f(x(:,j) + 1/2*K_2 ,p0);

45 K_4 = h*f(x(:,j) + K_3 ,p0);

46 x(:,j+1) = x(:,j) + 1/6*( K_1 + 2*K_2 + 2*K_3 + K_4);

47 j=j+1;

48 end

49
50 function der = f(u,p)% Lorenz system

51 der=zeros (3,1);

52 der (1) =10*(u(2)-u(1));

53 der (2) = u(1)*(p-u(3))-u(2);

54 der (3) = u(1)*u(2) -8/3*u(3);
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Figure 1: (a) Sets P and PN , and the corresponding sets A and AN ; (b) Ordered sets PN , AN and the
approximating attractor A∗.

16



Figure 2: PS method [m1 ◦p1,m2 ◦p2,m3 ◦p3], with p1 = 86, p2 = 95, p3 = 97 and weights m1 = 2, m2 = 1,
m3 = 3 used to approximate the attractor A0 corresponding to p0 = 93. (a) Phase overplot of A0 (blue)
and A∗ (red) ; (b) Overplot Poincaré sections with x3 = 100; (c) Overplot histograms; (d) Overplot time
series of the first component x1.
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Figure 3: PS method [m1 ◦ p1,m2 ◦ p2], with p1 = 24, p2 = 28.5, and weights m1 = 2, m2 = 1, used to
approximate the chaotic attractor A0 corresponding to p0 = 25.5. (a) Phase overplot of A0 (blue) and A∗

(red); (b) Overplot Poincaré sections with x3 = 20; (c) Overplot histograms;(d) Overplot time series of the
first component x1.

18



Table 1: Examples of attractors decomposition (switched attractor A∗ and averaged attractor A0 are plot
in red and blue plot respectively).

System Scheme A0 and A∗ A0 Decomposition

Cancer system

p0 = 0.555, N = 5

P5 = {0.198, 0.302, 0.402, 0.710, 0.806}
M5 = {2, 2, 1, 4, 3}
α1 = α2 = 1

6
, α3 = 1

12
, α4 = 1

3
, α5 = 1

4

A0.555 = 1
6

⊗ A0.198 ⊕ 1
6

⊗ A0.302

⊕ 1
12

⊗ A0.402 ⊕ 1
3

⊗ A0.702 ⊕ 1
2

⊗ A0.806

p0 = 0.544, N = 2

P2 = {0.535, 0.553}
M2 = {1, 1}
α1 = α2 = 1

2

A0.544 = 1
2

⊗ A0.535 ⊕ 1
2
A0.553

Rössler system

p0 = 8.5, N = 4

P4 = {8.28, 8.41, 8.540, 8.65}
M4 = {2, 1, 2, 3}
α1 = α3 = 1

4
, α2 = 1

8
, α4 = 3

8

A8.5 = 1
4

⊗ A8.28 ⊕ 1
8

⊗ A8.41 ⊕ 1
4

⊗ A8.54

⊕ 3
8

⊗ A8.65

p0 = 17, N = 2

P2 = {17, 19}
M2 = {1, 1}
α1 = α2 = 1

2
,

A18 = 1
2

⊗ A17 ⊕ 1
2

⊗ A19

RF system

p0 = 0.265, N = 3

P3 = {0.2615, 0.2642, 0.2667}
M3 = {1, 2, 3}
α1 = 1

6
, α2 = 1

3
, α3 = 1

2

A0.265 = 1
6

⊗ A0.2615 ⊕ 1
3

⊗ A0.2642

⊕ 1
2

⊗ A0.2667

p0 = 0.2715, N = 2

P2 = {0.2714, 0.2716}
M2 = {1, 1}
α1 = α2 = 1

2

A0.2715 = 1
2

⊗ A0.2714 ⊕ 1
2

⊗ A0.2716
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