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Abstract

In this paper, we carefully re-examine the chaotic RF model, �rst
studied by Rabinovich & Fabrikant [1979], and found many new and rich
complex dynamics of the model that were mostly not reported before.
The chaotic RF model has proved to be a great challenge to classical
numerical methods, in the sense that most classical numerical methods
have not been very successful in studying the complex dynamics of this
special RF model. Therefore, in this paper, we develop and apply a special
numerical method, the Local Iterative Linearization (LIL) method, along
with a special Turbo Pascal code based on this accurate LIL algorithm,
for a careful numerical study of this complex RF model. Many interesting
new �ndings are summarized and reported in this paper.
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1 Introduction

Rabinovich & Fabrikant [1979] studied the following dynamical system (named
the RF model hereafter):

:
x1 = x2(x3 � 1 + x21) + ax1;
:
x2 = x1(3x3 + 1� x21) + ax2;
:
x3 = �2x3(b+ x1x2);

(1)

where the constant parameters a; b > 0. This system models the stochasticity
arising from the modulation instability in a non-equilibrium dissipative medium.
Some qualitative analysis and numerical dynamics have been reported [Rabi-
novich & Fabrikant, 1979].
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The aim of this paper is to extend the numerical experiments reported in
[Rabinovich & Fabrikant, 1979]. This particular system has proved to be a
great challenge to classical numerical methods; in fact, most classical numerical
methods have not been very successful in studying the complex dynamics of the
RF model (1) to date.
Therefore, in this paper, we developed and applied a special numerical

method, which is an implicit multistep numerical method [Danca, 1997], called
the Local Iterative Linearization (LIL) method [Colosi et al., 1999] and is given
in the Appendix.
The system has been implemented via a Matlab-Simulink circuit, as shown

in Figure 1.
The complex dynamical behaviors of the system, obtained by our LIL simu-

lation, are shown in Figures 3-35. These �gures will be illustrated in detail one
by one below, but at this point a quick glance reveals some very interesting new
periodical and chaotic phenomena from the RF model (1), which are mostly not
reported in [Rabinovich & Fabrikant, 1979].
This paper is organized as follows: In Section 2, some analytical results

about the equilibrium points, Jacobian, and divergence etc. are derived; in
Section 3, LIL numerical results about stabilities, bifurcation diagrams, phase
portraits, Poincaré sections, �rst return maps, and times series etc. are pre-
sented; conclusions are given in Section 4, along with some discussions; �nally
in the Appendix, the LIL algorithm for numerical integration of ordinary ODEs
is described.

2 System Equilibrium Points

The equilibrium points of the RF model (1) are

X�(0; 0; 0);
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The existence domain of X�
1;2;3;4 is drawn in Figure 2.

All the equilibrium points are hyperbolic. The origin is an equilibrium point
that does not depend on the parameters a; b.
The right-hand side of the RF model (1), f = (f1; f2; f3)

t
: R3 ! R3, is a

smooth real-valued function with the following symmetry:

f1(�x1;�x2; x3) = �f1(x1; x2; x3)
f2(�x1;�x2; x3) = �f2(x1; x2; x3)
f3(�x1;�x2;�x3) = �f3(x1; x2; x3)
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which can be observed in the disposal of equilibrium points or limit cycles.
The system Jacobian, which will be evaluated at the equilibrium points later,

is given by

J =

0@ 2x y + a x2 + z � 1 y
�3x2 + 3 z + 1 a 3x

�2 y z �2x z �2 (x y + b)

1A
X�

(3)

It is clear that this Jacobian is rather complicated; therefore, analytically study-
ing the stability of the equilibrium points X�

1;2;3;4 is not an easy task.
Observe that

div f (x1; x2; x3) =
3X
i=1

@

@ xi
f (x1; x2; x3) = 2 (a� b)

It follows that the system is dissipative for a < b, because using the Liouville
formula we have V (t) = V (0)et div f(x) = V (0)e2 (a�b) t, which means that at
time t, an arbitrary volume element V enclosed by some surface S in the phase
space R3, is contracting if a < b. Hence, for a < b, the system is characterized
by the appearance of attractors in the phase space.

3 Stability and Bifurcation Analysis

We have observed that the system behavior is very sensitive to parameter b but
not as so to a. Hence, we �xed a = 0:1 and let b be varied. It is easy to see
that the system characteristic polynomials at X�

1;2 and X
�
3;4 are similar, due to

the symmetry of the RF model (1).
Because the extreme sensitivity, numerical integration of the system for b >

1:3 and b < 0:13 turns out to be very di¢ cult. We therefore chose for b the
range (bmin; bmax), with bmin = 0:13 and bmax = 1:3. For the region of interest
de�ned by b 2 (bmin; bmax) and a = 0:1, the system is dissipative. However,
note that some results were found for b =2 (bmin; bmax) and a 6= 0:1 .

3.1 Stability of system equilibrium points

Let us now consider, in the three-dimensional space (zb�) for a speci�ed point
X�; the following surfaces:

SX�(b; �) = fPX�(�)g = fj� I � J jX� ; for b 2 (bmin; bmax); � 2 Rg

which are the set of all system characteristic polynomials PX� at X�
1;2;3;4 for

b 2 (bmin; bmax):
The intersection of surfaces z = SX�(b; �) with the plane z = 0 gives the

set of eigenvalues (i.e., the roots of characteristic equations PX�(�) = 0 for
b 2 (bmin; bmax)), which are disposed on the following curves:

� (b; �) = f(b; �) ; PX�(�) = 0 ; b 2 (bmin; bmax)g
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In order to obtain the graph of a speci�c characteristic polynomial, PX� for
some b = b 2 (bmin; bmax), we let the surface SX� intersect with the plane b = b.
The equilibrium point X�

0 have the following characteristic equation:

j� I � J j �
�
�2 � 2 a�+ a2 + 1

�
(�+ 2 b) = 0

with the eigenvalues

�1 = �2 b < 0 ; and �2;3 = a� i
Therefore, X�

0 is a saddle-focus.
Next, consider X�

1;2. At these points, graphs of SX�
1;2
and PX�

1;2
are plotted

in Figure 3. In the background, the projections of the characteristic polynomials
PX�

1;2
for di¤erent values of b are represented. The real eigenvalue �1 is positive

for any b (see the curve � ). The two other eigenvalues, �2;3, are imaginary
conjugate with a negative real part (Figure 4). The entries used to obtain this
plot were determined numerically. The existence of the complex eigenvalues,
and also the existence of the only real eigenvalue, can be deduced from the plot
of SX�

1;2
, which indicates a monotonically decreasing map of variable � since the

derivative S 0X�
1;2
is negative for all values of b (Figure 5). Hence, we can conclude

that X�
1;2 are saddle-foci.

Hence, for any b 2 (bmin; bmax); X�
0 and X

�
1;2 are unstable equilibrium points

and, because of the complex eigenvalues, the system trajectories starting near
X�
0;1;2 spiral away from these points.
For X�

3;4, the characteristic equations

PX�
3;4
(�) = SX�

3;4
jb=b = 0; b 2 (bmin; bmax)

have two complex eigenvalues, �1;2, and a real one �3; numerically determined.
Actually, for the �rst values of b, close to bmin, the complex eigenvalues have a
very small imaginary part (in an order of 10�4 � 10�3). The real eigenvalue,
on the other hand, can be seen from Figures 6 and 7, which indicate that
it is negative. The existence of the complex eigenvalues can also be deduced
analytically from the monotonicity of PX�

3;4
. The real component of �1;2 is

negative for b 2 (bmin; b�), where b� ' 1:025, and is positive for b 2 (b�; bmax),
as can be seen from Figure 8. Therefore, X�

3;4 are stable for b 2 (bmin; b
�)

(stable node �stable focus) and saddle for b 2 (b�; bmax) (stable node �unstable
focus). Due to the existence of complex eigenvalues, the system trajectories
spiral around these equilibrium points too.
The above observations on the stability of equilibrium points are summarized

in Table 1.

b b 2 (bmin; b�) b 2 (b�; bmax)
X�
0 unstable unstable

X�
1;2 unstable unstable

X�
3;4 stable unstable

Table 1. Stability of equilibrium points of system (1) for b 2 (bmin; bmax)
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3.2 Bifurcation diagrams of system dynamics

The bifurcation diagrams of the RF model (1), obtained by the LIL numerical
algorithm, are depicted in Figures 9. To obtain these diagrams, we plotted the
maximum of the state variable as a function of the parameter b.
As can be seen from the diagrams, there are some switching between the

branches of the equilibrium points. This is due to the strong dependence of
the states on initial conditions. Also, for some values of b, there are some
�parasites�(which must not be interpreted as indicating some chaotic motions)
and this is likely due to the weak attractiveness of the equilibrium points, and/or
the in�uence of neighboring equilibrium points. This phenomenon seems to be
independent of the integration step size and the number of iterations. Although
these diagrams are useful for analyzing the equilibrium points, they may lead
to false prediction of chaos therefore must be used with precautions.
The graph of x3max shows some windows in which the diagram is quite

similar to those of the logistic map. Hence, we may expect to �nd, at least in
the direction x3, period-doubling bifurcations, chaos, band merging, windows of
periods 3 and 5 and veils.
Next, we follow the bifurcation diagram for x3 and try to use the most

signi�cant values of b to present the phase portraits and time series, whereas if
necessary the Poincaré section, power spectrum, �rst return map, and histogram
are presented.

Remarks:

a) Due to some integration problems encountered when using Matlab, we have
chosen those cases to study for which both LIL and Matlab could be used. The
power spectra and histograms were obtained using the analog computer circuit
(see Figure 1) but only as an orientated direction.

b) Due to the uncertainty of the numerical results, the chaotic or strange attrac-
tors is considered only as a �possible�outcome. The attractors were considered
�strange�following the argument of resemblance to strange attractor.
In the computer simulations by t0 we mean the start of the drawing, while

m represents the backward integration steps used by LIL (see Appendix). We
focus on the trajectories related to X�

3;4 with b as the key parameter, while X
�
0

and X�
1;2 are unstable and surrounded by limit cycles (see, e.g., Figures 10 and

11):

1) b = b1 = 0:14: A periodic motion was found (C1 in Figure 12). The points
X�
3;4 have extremely weak attractivity (as indicated by the large value of

tmax, necessary to reach the points).

2) b = b2 = 0:19: In addition to the above-mentioned periodic cycle, we found
that tmax, necessary to reach X�

3;4, is signi�catively decreased (Figure 13).

3) b = b3 = 0:2715: C1 may transform into chaotic motion (Figure 14). To
verify this, we computed the Lyapunov exponents: �1 = �0:431; �2 =
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�0:003, �3 = 0:091, and the �rst return map, Poincaré section, power
spectra (Figures 15). The points X�

3;4 are attractive.

4) b = b4 = 0:285: The periodic cycle C1 is again stable, and is growing with
its period, while X�

3;4 maintain their stability (Figure 16).

5) b = b5 = 0:2876: Again, a chaotic attractor appears (Figure 17). Now,
from Figure 18, we can see a quasi-periodic motion (with Lyapunov expo-
nents �1 = �0:441; �2 = 0:064, �3 = 0:002).

6) b = b6 = 0:98: The �rst strange attractor appears (Figure 19). The
chaotic behavior can be predicted from Figures 20.

7) b = b7 = 1:03: Once again, the stable limit cycle C1; which increases as
its period increases, together with the stable X�

3;4, are obtained (Figure
21).

8) b = b8 = 1:08: After a Hopf bifurcation at b� ' 1:025, points X�
3;4 trans-

form into two stable limit cycles, C2;3, near C1 (Figure 22).

9) b = b9 = 1:12: C1 is stable and C2;3 remain to be period-one limit cycles
(Figure 23).

We could not �nd C2;3 for b 2 (1:13; 1:2). It seems that C1 has a stronger
attractivity than C2;3, and any trajectory moving to C2;3 is �absorbed�by C1.

10) b = b10 = 1:21: A chaotic double-scroll motion appears. Again, the three
attractors, C1 and C2;3, seem to be indistinctive (Figure 24). In Figures
25, the power spectra, Poincaré sections, histograms, and �rst return maps
are all presented.

11) b = b11 = 1:215: The above-mentioned double-scroll attractor separates
(Figure 26). The chaotic behavior can be seen from Figures 27.

12) b = b12 = 1:225: Two periodic attractors appear (Figure 28).

In Figures 29-32, other possible periodic motions for b =2 (bmin; bmax) and
a 6= 0:1 are presented, while in Figure 33 an interesting strange attractor for a
and b < 0, di¤erent to those obtained for a; b > 0, was obtained.

4 Conclusions and discussions

In this paper, we have carefully examined the chaotic RF model, �rst studied by
Rabinovich & Fabrikant [1979], and found many new and rich complex dynamics
of the model that were mostly not reported in [Rabinovich & Fabrikant, 1979].
It is well known that because of the sensitive dependence on initial condi-

tions, a chaotic system tends to amplify, often exponentially, tiny initial errors
[Chen & Dong, 1998]. These kind of errors could be ampli�ed to so large that it
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is almost impossible to draw mathematically rigorous conclusions based on nu-
merical simulations. A typical case can be seen from Figures 34, wherefrom one
can deduce that the attractor size along the x3-axis increases signi�catively as
the step-size decreases. This problem has been noticed for a long time, and has
promoted a useful theory called �shadowing,� namely, the existence of a true
orbit nearby a numerically computed approximate orbit [Coomes et al. 1995].
We have also found that the strong dependence on the step-size produces,

for some values of b and with same initial conditions, some totally di¤erent
attractors (see Figures 30 and 35).
The chaotic RF model has proved to be a great challenge to classical nu-

merical methods; in fact, most classical numerical methods have not been very
successful in studying the complex dynamics of this special RF model. There-
fore, in this paper, we have developed and applied a special numerical method,
the Local Iterative Linearization (LIL) method, for a more careful numerical
study of this complex RF model. All computer test results and graphical plots
given in this paper were carried out by using a special Turbo Pascal code based
on our accurate LIL algorithm; therefore, they are very reliable.
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Appendix

Consider the Cauchy initial value problem:

:
x = f (t; x); x(t0) = x0;

where f : I � Rn ! Rn is a single valued real map of class Cm [Rn], m � 1;
I = [t0; T ]; T > 0, x0 2 Rn:
Let N = (T � t0) =h, where h is the step-size. Then the LIL (Local Iterative

Linearization) implicit multistep method, applied on the equidistant grids t0 <
t1 < ::: < tN = T , tk = t0 + k h, k = 1; 2; :::; N , is the following:

xk = ukh+ vk; k = 1; 2; :::; N;

with

uk =

mP
i=0

�0 i f
k�i

�1 0
; vk =

mP
i=1

�1 i x
k�i

�1 0
;

where f k�i = f (tk;
mP
i=1

"mix
k�i); k = 1; 2; :::; N , m is the number of backward

steps. The coe¢ cients � and " for m = 3 are drawn from Tables 2 and 3. The
most convenient case (CPU time versus accuracy) is, as in the present paper,
m = 3. The error in this case is of order h4 (see [Danca, 1997; Colosi et al.,
1999] for a more comprehensive description of the LIL method, convergence
proofs and its application examples).

�00 �01 �02 �03
13=12 �5=24 1=6 �1=24

�10 �11 �12 �13
15=8 �25=8 13=8 �3=8

Table 2 Coe¢ cient �

"31 �32 �33
3 �3 1

Table 3 Coe¢ cients " and �
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