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Abstract

In this paper, the problem of approximating hidden chaotic attractors of a general class
of nonlinear systems is investigated. The Parameter Switching (PS) algorithm is utilized,
which switches the control parameter within a given set of values with the initial value prob-
lem numerically solved. The PS-generated generated attractor approximates the attractor
obtained by averaging the control parameter with the switched values, which represents
the hidden chaotic attractor. The hidden chaotic attractors of a generalized Lorenz system
and the Rabinovich-Fabrikant system are simulated for illustration.
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In [10, 11, 12] it is proved that the attractors of a chaotic system, considered
as the unique numerical approximations of the underlying ω-limit sets (see e.g.
[31]), after neglecting sufficiently long transients, can be numerically approx-
imated by switching the control parameter in some deterministic or random
manner while the underlying initial value problem (IVP) is numerically inte-
grated with the Parameter Switching (PS) algorithm. The attractors, whose
basins of attractions are not connected with equilibria are called hidden attrac-
tors, while the attractors for which the trajectories starting from a point in a
neighborhood of an unstable equilibrium are attracted by some attractor, are
called self-excited attractors [4, 5, 6]. In this paper we prove analytically and
verified numerically that the PS algorithm can be used to approximate any
desired hidden attractors of a class of general systems which model systems
like Lorenz, Chen, Rössler, etc.
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1. Introduction

One main task in the investigation of a dynamical model is to study the limiting be-
havior of the system states after the transient processes, i.e., the problem of localization
and analysis of attractors (limiting sets of system's states). Here, one of the challenging
problems is to study models with multistability, whose states can alternate between some
mutually exclusive attractors over time [1]. In such models, particularly in the case of the
existence of attractors with very small basins or unidentified attractors, one can observe
sudden switching to unexpected (unpredictable or unknown) attractors, since such sys-
tems are sensitive to noise, initial conditions, and system parameters [2, 3]. While trivial
attractors (stable equilibria) can be found either analytically or numerically of any dy-
namical system, the search for nontrivial attractors could be a very challenging task (e.g.
the famous Hilbert 16th problem on periodic attractors in two-dimensional polynomial dy-
namical systems is still far from being solved). The structures of many classical physical
dynamical models guarantee that attractors exist because the trajectories cannot tend to
infinity and the oscillations are excited by an unstable equilibrium. Such attractors are
called self-excited attractors, which can be easily found by constructing a solution using
initial data from a small neighborhood of the equilibrium, observing how it is attracted
thereby visualizing the attractor. However, there are attractors of another type, called
hidden attractors [4, 5, 6], whose basins of attractions are not connected with equilibria
and, thus, the search and study of such attractors are very challenging [3, 7]. For example,
hidden attractors can be in systems with no equilibria [8] or in a multistable system with
only one stable equilibrium [9].

Self-excited attractors can be numerically visualized through a standard computational
procedure, in which after the transient process a trajectory starting from a point in a
neighborhood of an unstable equilibrium is attracted to an attractor. In contrast, the
basin of attraction for a hidden attractor is not connected with any small neighborhood of
any equilibrium and, thus for the numerical localization of a hidden attractor it is necessary
to develop a special analytical-numerical procedure, in which an initial point is chosen from
the basin of attraction. To numerically verify that a chaotic attractor is hidden, one has to
check that all trajectories starting in small neighborhoods of unstable equilibria are either
attracted by stable attractors or diverging to infinity.

The known autonomous chaotic dynamical systems depending on a single real control
parameter p ∈ R, such as the Lorenz system, Rössler system, Chen system, Lotka–Volterra
system, Rabinovich–Fabrikant system, Hindmarsh-Rose system, Lü system, classes of min-
imal networks and many others, are modeled by the following Initial Value Problem (IVP):

ẋ(t) = f(x(t)) + pAx(t), x(0) = x0, (1)

where t ∈ I = [0, T ], x0 ∈ Rn, p ∈ R the control parameter, A ∈ Rn×n a constant matrix,
and f : Rn → Rn a continuous nonlinear function.
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For example, for the Lorenz system

·
x1 = σ(x2 − x1),
·
x2 = x1(ρ− x3)− x2,
·
x3 = x1x2 − βx3,

(2)

with n = 3 and the standard parameter values a = 10 and c = 8/3, if one considers p = ρ
then system (1) has

f(x) =

 σ(x2 − x1)
−x1x3 − x2
x1x2 − βx3

 , A =

 0 0 0
1 0 0
0 0 0

 .

The PS algorithm approximates numerically any solution of the IVP (1) [10, 11, 12]. If
one chooses a finite set of values of the underlying control parameter, PN = {p1, p2, ..., pN},
N ≥ 2, and then switches p within PN for a relatively short period of time, while the
underlying IVP is numerically integrated, then the resultant “switched” numerical solution
will converge to the “averaged” solution of the system. Consequently, any attractor of the
underlying system, obtained for p being replaced with the average of switched values, can
be approximated by the attractor generated from the switching operations.

The PS algorithm was successfully applied to approximating the attractors of continuous-
time chaotic systems of integer or fractional order, including the Lorenz system, Chen sys-
tem, Lü system, Rössler system, Hastings-Powell system, Lorka-Volterra system, minimal
networks, Hindmarsh-Rose neuronal system, Rikitake system, etc. [10, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21], and also to discrete nonlinear systems of real variables [22, 23], or of com-
plex variables (fractals) [24, 25]. Moreover, the algorithm can be utilized in experimental
applications [26] and synchronization [27].

The PS algorithm is useful e.g. when one intends to obtain an attractor but for some
reason the underlying parameter of the attractor cannot be set. Also, the PS algorithm
could explain why, in some natural systems, alternations between different dynamics could
lead to unexpected behavior.

In this paper, the PS algorithm is used to approximate some hidden chaotic attractors
which, as mentioned above, is a challenging task.

The paper is organized as follows: Section 2 presents the PS algorithm, its convergence
and its numerical implementation. In Section 3, the PS algorithm is used to approximate
hidden attractors in a generalized Lorenz system and the Rabinovich–Fabrikant system,
respectively. The short conclusion section ends the investigation.

2. Parameter Switching algorithm

2.1. Description and convergence of the PS algorithm

Let PN = {p1, p2, ..., pN} ⊂ R, a set of N values of parameter-p, N ≥ 2. Consider the
IVP (1), numerically integrated it over I with p switching periodically its values within PN
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for relatively short periods of time. The PS algorithm is associated with the “switching”
equation in the following form:

ẋ(t) = f(x(t)) + ph(t)Ax(t), x(0) = x0, (3)

with ph : I → PN being a Tp-periodic piece-wise constant function, depending on a
small h > 0, which switches periodically its values ph(t) = ph(t + Tp) = pi ∈ PN ,
i ∈ {1, 2, ..., N}, for t ∈ Ii,j , and j = 1, 2, ..., where Ii,j are subintervals of the time interval

I =
∪

j

(∪N
i=1 Ii,j

)
(see the sketch in Fig. 1 for the case of N = 3 and P3 = {p1, p2, p3}).

Denote the average of the switched values by p∗, which is a constant having the same
value for all t ∈ I = [0, T ]:

p∗ =
1

Tp

∫ t+Tp

t
ph(u)du, t ∈ I, (4)

where ph(·) is one of the parameter values pi, i ∈ {1, 2, ..., N}.
Then, the “averaged” equation of (1), obtained for p being replaced with p∗, reads

˙̄x(t) = f(x̄(t)) + p∗Ax̄(t), t ∈ I = [0, T ], x̄(0) = x̄0. (5)

It can be proved that switching p within PN in (3) while the switching equation (3) is
integrated, the obtained solution approximates the solution of the averaged equation (5).
Before proceeding, the following assumption is needed.
Assumption H1. In the IVP (1), f satisfies the Lipschitz condition

|f(y1)− f(y2)| ≤ L|y1 − y2|, ∀y1,2 ∈ Rn, (6)

for some L > 0.
Denote ph(t) := P (t/h) and let ∥ · ∥0 be the maximum norm on C([0, T ],Rn), i.e.,

∥x̄∥0 := maxt∈[0,T ] |x̄(t)|. Then, under Assumption H1, on [0, T ], the following theorem
holds1.

Theorem 1. Under Assumption H1

|x(t)− x̄(t)| ≤ (|x0 − x̄0|+ h∥A∥∥x̄∥0K)e(L+∥P∥0∥A∥)T , (7)

for all t ∈ [0, T ], where

K := max
t∈[0,Tp]

∣∣∣∣∫ t

0
(P (s)− p∗)ds

∣∣∣∣ .
1The convergence for the infinite interval [0,∞) requires some dissipativity or stability of the system

[30].
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Proof. From (3) and (5), one has

|x(t)− x̄(t)| ≤ |x0 − x̄0|+ L

∫ t

0
|x(s)− x̄(s)|ds+

∣∣∣∣∫ t

0
(ph(s)− p∗)ds

∣∣∣∣ ∥A∥∥x̄∥0

+∥P∥0∥A∥
∫ t

0
|x(s)− x̄(s)|ds

= |x0 − x̄0|+ ∥A∥∥x̄∥0
∣∣∣∣∫ t

0
(ph(s)− p∗)ds

∣∣∣∣+ (L+ ∥P∥0∥A∥)
∫ t

0
|x(s)− x̄(s)|ds.

Because ph is Tp-periodic, one has

max
t∈[0,T ]

|ph(t)| ≤ max
t∈[0,Tp]

|P (t)| = ∥P∥0.

On the other hand, one has∫ t

0
(ph(s)− p∗)ds = h

∫ t/h

0
(P (s)− p∗)ds.

Since
∫ t
0 (P (s)− q∗)ds is Tp-periodic, one has

max
t∈[0,T ]

∣∣∣∣∣
∫ t/h

0
(P (s)− p∗)ds

∣∣∣∣∣ ≤ K.

Hence,

|x(t)− x̄(t)| ≤ |x0 − x̄0|+ h∥A∥∥x̄∥0K + (L+ ∥P∥0∥A∥)
∫ t

0
|x(s)− x̄(s)|ds.

By the Gronwall inequality [28], one obtains (7).

Remark 1. i) The above proof is more general than the proof presented in [12], where
the convergence is obtained via the averaging method [29] and the initial conditions of
(3) and (5) are equal. In [11], the proof is made numerically on the basis of the global
error of Runge-Kutta. In [30], beside the convergence of the PS algorithm, numerical
approximation estimation and Lyapunov method are presented, and moreover the PS
convergence for any utilized Runge-Kutta method is proved.

ii) The periodicity assumption on p in (3) is too strong. Actually, the convergence proof
in [11] and the numerical experiments in [21, 13, 14] (or experimental applications
in [26]) show that the PS algorithm can be implemented in some random way as well.
For instance, once PN is set, the order in which p switches its values, p = pi ∈ PN ,
can be random. Therefore, one may assume that random or periodic switches of
parameters in natural systems have a real meaning, such as in ecological systems
or circuitry. Also, random parameter switches in some systems explain why chaotic
(hidden) attractors could appear unexpectedly.
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iii) If the averaged system has a hyperbolic invariant compact set, then the switching
equation (3) has also a near hyperbolic invariant compact set.

A global attractor is a compact and invariant set composed of all bounded global
trajectories and contains all the dynamics evolving from all possible initial conditions. In
other words, it contains all solutions, including stationary solutions, periodic solutions,
as well as chaotic attractors, relevant to the asymptotic behaviors of the system. On
the contrary, a local attractor is a compact invariant set, which attracts its neighboring
trajectories. A global attractor is hence composed of the set of all local attractors, where
each local attractor only attracts trajectories from a subset of initial conditions, specified
by its basin of attraction. In some cases, a unique local attractor may also be the global
one. When a global attractor is composed of several local attractors, the initial conditions
are essential for the numerical approximations of these attractors, respectively. Therefore,
the following assumption is made.
Assumption H2 Suppose that x0 and x̄0 belongs to the same attraction basin of solutions
to the IVP (3).

The ω-limit set of a trajectory through x ∈ Rn is given as ω(x) =
∩

s≥0

∪
t≥sΦ(t, x),

where Φ(t, x) is the flow of the system.
As common in numerical investigations of nonlinear systems, for every p and x0, by an

attractor one considers the unique numerical approximation of the underlying ω-limit sets
(see e.g. [31]), neglecting sufficiently long transients.

By Theorem 1, which characterizes the PS algorithm, the following result can be ob-
tained.

Corollary 2. Every attractor of the system modeled by the IVP (3) can be numerically
approximated using the PS algorithm.

In other words, using the PS algorithm, the attractor A∗ (switched attractor) obtained
from equation (3) by switching p within PN , will approximate numerically the attractor
denoted Ap∗ (averaged attractor) obtained from (5).

2.2. Implementation of the PS algorithm

To implement numerically the PS algorithm, let h be the step-size of the utilized explicit
numerical method for integrating the corresponding IVP (such as the standard Runge-
Kutta method, used in this paper).

Symbolically, for a given h > 0, the PS algorithm can be denoted as

PS := [m1p1,m2p2, ...,mNpN ], (8)

where mi ∈ N∗, i = 1, 2, ..., N , are some positive integers, called “weights” of the p values.
Then, p∗ can be expressed as

p∗ :=

∑N
i=1mipi∑N
i=1mi

. (9)
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The scheme (8) reads as follows: while the IVP (3) is numerically integrated, for the first
m1 integration steps, p = p1; for the next m2 steps, p = p2; and so on, till the last
mN step, when p = pN . So, the first set of subintervals Ii,1, for i = 1, ..., N , is covered.
Next, the algorithm repeats on the next set of subintervals Ii,2, and so on, until the entire
time interval is covered. Time subintervals Ii,j have lengths mih, for i = 1, 2, ..., N and

j = 1, 2, ..., and the switching period is Tp =
∑N

i=1mih.

Remark 2. The main characteristic of the PS algorithm relies on the linear de-
pendence on p of the right-hand side of system (1) and on the convexity of the re-
lation (9). By denoting αj = mj/

∑N
i=1mi, j = 1, 2, ..., N , relation (9) becomes

p∗ =
∑N

i=1 αipi with
∑N

i=1 αi = 1. Thus, for any set PN , N > 1, and any weights mi,
i = 1, 2, ..., N , p∗ is always inside the interval (pmin, pmax), with pmin ≡ min{PN}
and pmax ≡ max{PN}. Therefore, to approximate some attractor Ap∗ using the PS
algorithm, the set PN has to be chosen such as

p∗ ∈ (pmin, pmax). (10)

Consider a dynamical system modeled by the IVP (3), with the set of its attractors
A and some set of admissible parameter values PN , N ≥ 2. Based on (10) and on the
convexity of the relation (9), beside the fact that every attractor can be approximated with
the PS algorithm (Corollary 2), the following important result can be proved.

Corollary 3. Given a set PN , with N ≥ 2 and weights mi, i = 1, 2, · · · , N , the attractor
A∗ obtained with the PS algorithm belongs to A.

To visualize the results, i.e., to underline the match between the averaged attractor,
Ap∗ , which is to be approximated and the approximating attractor, A∗, a computer-graphic
criterion is now introduced.

Criterion 4. Two attractors are considered to be almost-identical if
a. their geometrical forms in the phase space (almost) coincide;
b. the orientation of the motion is preserved.

The above criterion is a suitable modification and adaptation of the known concept of
topological equivalence (see e.g. [41]), for practical use rather than for theoretical rigor.

Criterion 4.b is easy to implement computationally (e.g. with Matlab comet3 function)
and has been verified for all examples studied later in this paper.

To apply Criterion 4.a (the match between the two attractors), Ap∗ (blue or green plot)
and A∗ (red plot) are overplotted in the phase space and also for their Poincaré sections.
Visually, the histograms reveal the match between attractors.

Also, the match between the two attractors can be verified by calculating the Hausdorff
distance DH(A∗, Ap∗) between them. The Hausdorff distance between two sets A and B
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in the metric space R3, DH(A,B), is given by [32, p. 114]

DH(A,B) = max

{
sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈B

d(x, y)

}
, (11)

where d(a, b) is the Euclidean distance between two points a = (x1, x2, x3) and b =
(y1, y2, y3) in R3. Since the two numerically generated attractors A∗ and Ap∗ are curves
with the same number of M ordered pairs of coordinates A∗ = {a1, a2, ..., aM} and Ap∗ =
{b1, b2, ..., bM}, the distance between a point ai ∈ A∗ to the set Ap∗ is given by

d(ai, Ap∗) = min
j

∥bj − ai∥,

for i, j = 1, 2, ...,M . Therefore, the Hausdorff distance (11) can be calculated numerically
by

DH(A∗, Ap∗) = max

{
max

i
{d(ai, Ap∗)},max

j
{d(bj , A∗)}

}
.

A study of numerical limitations of the PS algorithm is presented in [20] and [11].

3. Hidden chaotic attractors approximated with the PS algorithm

In this section, under Assumptions H1 and H2, hidden chaotic attractors of a generalized
Lorenz system and the Rabinovitch-Fabrikant system are computed with the PS algorithm.
The approximated hidden chaotic attractor is the averaged attractor Ap∗ . To approximate
Ap∗ , one chooses a set of N parameter values for the switching process, PN , such that
condition (10) holds and, with weights mi, i = 1, 2, ..., N , relation (9) is verified. Then,
scheme (8) is applied to obtain the switched attractor A∗ which approximates the desired
hidden attractor Ap∗ .

The numerical and simulations results of the PS algorithm were realized with the stan-
dard RK algorithm, which allows to implement easily the switches imposed by the algorithm
for everymi steps, i = 1, 2, ..., N . The integration step-size was taken as h = 0.0002−0.001,
the histograms for the x1 component use 512 bars, and the integration time interval is
I = [0, 300]2.

For the case of stable cycles, DH(A∗, Ap∗) is of order 10
−3−10−2. In the case of chaotic

attractors, DH(A∗, Ap∗) is larger, e.g., for I = [0, 300], DH(A∗, Ap∗) is of order 10
−1, while

for I = [0, 500], DH(A∗, Ap∗) diminishes at 10−2.
In the case of chaotic attractors, in order to reduce numerical errors, Assumption H2

is strengthened by using identical initial conditions x0 and x̄0.

2Longer integration time intervals could reveal possible long-time transient chaotic behavior (see e.g.
[42]). However, too large the time intervals could lead to inaccurate numerical solutions (see e.g. [43]).
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3.1. Generalized Lorenz system

Consider the following generalized Lorenz system [34, 35], which was obtained from a
Rabinovich system [36, 37]:

·
x1 = ap(x1 − x2)− ax2x3,
·
x2 = px1 − x2 − x1x3,
·
x3 = −x3 + x1x2,

(12)

with a < 0.
The system reads as (1), with

f(x) =

 −ax2x3
−x2 − x1x3
−x3 + x1x2

 , A =

 a −a 0
1 0 0
0 0 0

 .

With a = −0.5, the bifurcation diagram, for p ∈ [0, 40] is presented in Fig. 2.
As shown in [36, 37], the system reveals hidden chaotic attractors. In [38] hidden

attractors of the fractional-order case are studied. In this paper, the hidden attractor, H1

(see Fig. 3), was obtained for p∗ = 7 (Similar hidden chaotic behavior was found for some
p∗ > 7) with equilibria

X∗
0 (0, 0, 0), X∗

1,2(±3.533,±1.834, 6.481).

Since the eigenvalues of X∗
0 are (−7.355,−1, 2.855), the equilibrium X∗

0 is a sad-
dle. X∗

1,2 are stable (focus node) equilibria since their eigenvalues are (−5.497,−0.002 +
3.900i,−0.002− 3.900i). The zoomed vicinity VX∗

0
of the unstable equilibrium X∗

0 reveals
the fact that all trajectories started from VX∗

0
are attracted either by the stable equilibrium

X∗
1 (red trajectories) or by the stable equilibrium X∗

2 (blue trajectories). Therefore, the
chaotic attractor is a hidden attractor.

Example 1. A stable cycle corresponding to p∗ = 25.5 is obtained, situated in a relative
large periodic window (Fig. 2). The attractor, considered as the averaged attractor Ap∗ ,
can be obtained using e.g. scheme (8), with e.g.

[1p1, 1p2, 1p3, 1p4, 2p5], and P5 = {6.5, 22.2, 28, 31.9, 32.2},

where m1 = m2 = ... = m4 = 1 and m5 = 2. This gives, via (9), p∗ = (1× p1+1× p2+1×
p3+1×p4+2×p5)/(1+1+1+1+2) = 25.5. The switching period is Tp =

∑5
i=1mih = 6h.

To underline the perfect match between the obtained attractor A∗ (red plot) and the
(stable cycle) averaged attractor (blue plot) Ap∗ , in Fig. 4 the two attractors are overplotted
in the phase space (Fig. 4 a) and in Poincaré sections with x3 = 28 (Fig. 4 b), respectively.
Histograms relating to the component x1, for both A∗ and Ap∗ , are plotted in Fig. 4 (c)
and (d), respectively, where transients have been removed.
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Example 2. Other sets of PN with appropriate weights can be used to obtain the same
stable cycle, using for example the scheme

[1p1, 1p2], with P2 = {21, 30},

where m1 = m2 = 1, which gives p∗ = (p1 + p2)/2 = 25.5. In this case, Ap∗ is obtained by
alternating every integration step, p, within P2 = {21, 30}.

Example 3. Not only stable cycles can be approximated by the PS algorithm, but also
chaotic (self-excited) attractors, for example the one corresponding to p = 34.2 (see Fig.
2), can be approximated by using e.g.

[2p1, 3p2], with P2 = {25.5, 40},

which gives p∗ = 34.2 (Figs. 5 (a)-(d); where the Poincaré sections are obtained for x3 =
38). Because of the infinite integration time needed to generate a chaotic attractor, between
the two attractors there are some small differences as can be seen from the histograms (Figs.
5 (c), (d)).

Example 4. To generate the hidden attractor H1, one needs to find a scheme (8) which
gives p∗ = 7. One of the possible choices is

[1p1, 1p2], with P2 = {5, 9}.

The match between the switched attractor A∗ and the averaged attractor Ap∗ is underlined
by the phase overplot of the averaged (hidden) attractor (green plot) and switched attractor
(red plot) in Fig. 6 (a), overplots of Poincaré sections with x3 = 6 (Fig. 6 (b)), and the
histograms (Figs. 6 (c), (d)).

3.2. Rabinovich-Fabrikant system

The Rabinovich-Fabrikant (RF) system is modeled by the following IVP [39]:

.
x1 = x2

(
x3 − 1 + x21

)
+ ax1,

.
x2 = x1

(
3x3 + 1− x21

)
+ ax2,

.
x3 = −2x3 (p+ x1x2) ,

(13)

with a = 0.1.
The RF system has extremely rich dynamics, presenting coexisting attractors, self-

excited attractors, hidden-attractors and virtual saddles-like equilibria [40, 39].
In (13), one has

f(x) =

 x2
(
x3 − 1 + x21

)
x1

(
3x3 + 1− x21

)
−2x3 (p+ x1x2)

 , A =

 a a 0
0 0 0
0 0 0

 .
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One of the two hidden attractors, H2 (Fig. 7), corresponds to p = 0.2876. For this value
of p, the equilibria are

X∗
0 (0, 0, 0), X∗

1,2(∓1.1600,±0.2479, 0.1223), X∗
3,4(∓0.0850,±3.3827, 0.9953).

The equilibrium X∗
0 is unstable (saddle) since its eigenvalues are (−0.5752, 0.1− i, 0.1+ i).

EquilibriaX3,4 are also unstable (saddle) with eigenvalues (0.1869,−0.281+5.397i,−0.281−
5.397i), while equilibria X∗

1,2 are stable (focus nodes), with eigenvalues (−0.2561,−0.060−
1.473i,−0.060 − 1.473i). As can bee seen, trajectories from a small vicinity of the un-
stable equilibrium X∗

0 or X3,4 are attracted either by infinity or by the stable equilibria
X∗

1,2. Compared with the hidden chaotic attractor H1 of the Lorenz system (12), due to
the presence of complex eigenvalues, in the case of the hidden chaotic attractor H2 here,
trajectories starting from X∗

0 (grey and black) and also from X∗
3,4 (light brown and blue,

for the case of X∗
4 ) exit the vicinities by spiralling routes (see detail in Fig. 3 and Fig. 7

(b) and (c)).
To easily choose the set PN , the bifurcation diagram for p ∈ [0.24, 0.295] may be utilized

(Fig. 8).

Example 5. To generate H2, one can use e.g. the scheme

[1p1, 2p2, 2p3], with P3 = {0.28, 0.289, 0.29},

for which, by (9), p∗ = 0.2876. This generates the hidden attractorH2. The match between
the obtained switched attractor A∗ (red plot) and the approximated hidden attractor H2

(green plot) can be observed from the match in the phase plot (Fig. 9 (a)), Poincaré
sections with x3 = 0.35 (Fig. 9 (b) and histograms (Fig. 9 (c) and (d)).

Example 6. Similarly, the other hidden attractor H3 (Fig. 8)3, which corresponds to p =
0.2715, can be be obtained with the PS algorithm, by alternating e.g. the values of the set
P2 = {0.265, 0.278}, using the scheme

[1p1, 1p2].

In this case, the Poincaré section is set at x3 = 0.3. Again, there exists a perfect match
between the obtained attractor A∗ and the hidden attractor H2 (see the phase overplots,
overploted Poincaré sections and histograms in Figs. 10 (a)-(d), respectively).

Conclusion

In this paper, it has been proved and verified numerically that the hidden chaotic attrac-
tors of dynamical systems modeled by a general initial value problem can be approximated

3Details about this particular attractor can be found in [39].
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by switching the control parameter, while the problem is integrated. The approximations
is verified with numerical tools by means of phase portraits, histograms, Poincaré sections
and Hausdorff distance. In order to facilitate the choice of the switching parameters, the
bifurcation diagrams are also utilized. The algorithm has been applied successfully to a
generalized Lorenz system and the Rabinovich-Fabrikant system.
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Figure 1: Piece-wise constant function p for N = 3 (sketch).
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Figure 2: Bifurcation diagram of the generalized Lorenz system (12).
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Figure 3: Hidden chaotic attractor H1 (green) of the generalized Lorenz system (12). Trajectories starting
from the vicinity VX∗

0
of the unstable equilibrium X∗

0 are attracted either to the stable equilibrium X∗
1 (red

plot) or to the stable equilibrium X∗
2 (blue plot).
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Figure 4: Stable cycle of the generalized Lorenz system (12) corresponding to p∗ = 25.5, obtained using
the PS algorithm, with the scheme [1p1, 1p2, 1p3, 1p4, 2p5], P5 = {6.5, 22.2, 28, 31.9, 32.2}. (a) Overplots of
generated attractor A∗ (red plot) and averaged attractor Ap∗ (blue plot). (b) Overplots of Poincaré sections
with plane x3 = 28, corresponding to A∗ and Ap∗ . (c) Histogram with 512 bars of the first component x1

of A∗ (red plot). (d) Histogram with 512 bars of the first component x1 of Ap∗ (red plot).
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Figure 5: Chaotic attractor of the generalized Lorenz system (12) corresponding to p∗ = 34, obtained using
the PS algorithm, with scheme [1p1, 1p2], P2 = {21, 30}. (a) Overplots of generated stable cycle A∗ (red
plot) and averaged stable cycle Ap∗ (blue plot). (b) Overplots of Poincaré sections with plane x3 = 38,
corresponding to A∗ and Ap∗ . (c) Histogram with 512 bars of the first component x1 of A∗ (red plot). (d)
Histogram with 512 bars of the first component x1 of Ap∗ (blue plot).
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Figure 6: Hidden chaotic attractor H1 of the generalized Lorenz system (12) corresponding to p∗ = 7,
obtained using the PS algorithm, with scheme [1p1, 1p2], P2 = {21, 30}. (a) Overplots of the generated
attractor A∗ (red plot) and averaged attractor Ap∗ (green plot). (b) Overplots of Poincaré sections with
plane x3 = 6, corresponding to A∗ and Ap∗ . (c) Histogram with 512 bars of the first component x1 of A∗

(red plot). (d) Histogram with 512 bars of the first component x1 of Ap∗ (green plot).
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Figure 7: Hidden chaotic attractor H2 (green plot) of the RF system (13) for p∗ = 0.2876. (a) Phase
portrait. (b) Zoomed vicinity VX∗

4
of the unstable equilibrium X∗

4 . (c) Zoomed vicinity VX∗
0
of the unstable

equilibrium X∗
0 . Trajectories starting from the unstable points X∗

0 and X∗
3,4 are either attracted to the

stable equilibria X1,2 (dotted blue and red respectively) or to infinity (light and dark brown, and grey and
black).
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Figure 8: Bifurcation diagram of the RF system (13) for p ∈ [0.24, 0.3].
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Figure 9: Hidden chaotic attractor H2 of the RF system (13) corresponding to p∗ = 0.2876, obtained
using the PS algorithm, with scheme [1p1, 2p2, 2p3], P3 = {0.28, 0.289, 0.29}. (a) Overplots of generated
attractor A∗ (red plot) and averaged attractor Ap∗ (green plot). (b) Overplots of Poincaré sections with
plane x3 = 0.35, corresponding to A∗ and Ap∗ . (c) Histogram with 512 bars of the first component x1 of
A∗ (red plot). (d) Histogram with 512 bars of the first component x1 of Ap∗ (green plot).
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Figure 10: Hidden chaotic attractor H3 of the RF system (13) corresponding to p∗ = 0.2715, obtained using
the PS algorithm, with scheme [1p1, 1p2], P2 = {0.265, 0.278}. (a) Overplots of generated attractor A∗ (red
plot) and averaged attractor Ap∗ (green plot). (b) Overplots of Poincaré sections with plane x3 = 0.3,
corresponding to A∗ and Ap∗ . (c) Histogram with 512 bars of the first component x1 of A∗ (red plot). (d)
Histogram with 512 bars of the first component x1 of Ap∗ (green plot).
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