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Impulsive stabilization of chaos in fractional-order systems
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Abstract This paper considers a class of nonlinear impulsive Caputo differential equations of fractional or-
der, which models chaotic systems. Computer-assisted proof of chaos suppression by stabilizing the unstable
system equilibria is provided. A non-existence result of periodic solutions is presented and the commensurate
fractional-order Lorenz system is simulated for illustration.
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1 Introduction

The concept of impulsive control has a long history and its mathematical foundation called impulsive
differential equations can be traced back to the beginning of the control theory. Many impulsive control
methods were successfully developed under the framework of optimal control and were occasionally called
impulse control. Nowadays there is a tendency of integrating impulsive control into hybrid control systems.
In mechanical systems, impulsive phenomena had been studied for different scenarios such as mechanical
systems with impacts. Impulsive systems can only be studied by the mathematical tool based on impulsive
differential equations. The study of impulsive control problems had been restricted to only a few kinds of
special problems such as mechanical systems with impacts and the optimal control of spacecraft [1]. In the
last two decades, impulsive differential equations had been intensively studied and impulsive differential
equations were found in e.g. nanoelectronic devices and chaotic spread-spectrum communication systems as
well in electrical engineering applications.

The main reason that only integer-order systems had been considered till recently was the absence
of methods to find the solutions of differential equations of fractional order. Today, the more than 300
years old fractional calculus (see e.g. monographies [2,3]), is revised via many numerical methods to ap-
proximate fractional-order derivatives and integrals [4,5]. As a consequence, the number of applications of
fractional derivative equations (FDEs) is growing continuously [6]. Nowadays, FDEs serve as good models
in mechatronics, viscoelasticity, aerodynamics, seismology, biophysics, electrical circuits, biology, blood flow
phenomena, fluid flows, chemistry, control theory, etc. Also, since fractional-order systems present infinite
memory and hereditary properties, they are ideal models for neural systems [7,8].
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The most widely known integration methods for FDEs are the frequency-based methods [10], the Adams-
Bashfroth-Moulton numerical predictor-corrector scheme [11] (which exhibits the long-term memory prop-
erty of the underlying system) and methods based on the Grünwald-Letnikov definition of fractional deriva-
tives [6,12].

Chaos control or stabilization, on the other hand, suppresses completely or reduces significantly chaotic
oscillations toward regular movements. Controllers designed for stabilization of chaos in integer-order sys-
tems [13] have also been used to stabilize fractional-order systems ([14–17]).

In the last few years, chaos control, including stabilization of unstable equilibria and more generally
unstable periodic orbits was the subject of a large number of research works. As a result many methods for
chaos suppression, such as the OGY method, state-feedback control method and delayed-feedback control,
have been developed [18–23].

In the last decades, impulsive DEs and impulsive FDEs attracted increasing attention from researchers
in engineering, biology, physics, and the like. Based on the Dirac delta function, Impulsive Fractional-order
Differential Equations (IFDE) can model processes with abrupt changes, which cannot be described with
classical differential problems (see [24–29] and references therein). For comparison, impulse integer-order
differential equations and related issues, i.e., stability, control etc. can be found in the monograph [30].

In this paper, impulsive control is used to stabilize chaotic behavior of fractional-order systems. For a
right choice of impulses and time moments, the controlled trajectories could reach a stable equilibrium.
This equilibrium is situated closely to one of the system unstable equilibria of the non-controlled system.
The approach applies to a large class of nonlinear fractional-order systems such as Rössler, Chua, Lorenz,
Chen, Rabinovich-Fabrikant, and Lotka-Volterra systems. The advantage of the proposed impulsive chaos
stabilization method consists in the fact that it can be applied to one or several state variables and at
different time moments. Also, it is analytically proved that exact periodic solutions of impulsive FDEs can
exist.

The rest of the paper is organized as follows: Section II presents some preliminary results. In Section
III, impulsive chaos control with its numerical implementation are described and the case of commensurate
fractional-order Lorenz system is illustrated. A recent problem of non-existence of exact periodic orbits of
fractional-order systems for the case of impulsed fractional-order Lorenz system is presented and analytically
proved. The paper is ended by a short conclusion.

2 Notions and preliminaries results

2.1 Impulsive fractional-order equations

Definition 1 Let q ∈ (0,∞)\N, n = [q]+1 and some function f ∈ Cn([a, b],R). The fractional-order Caputo
derivative of order q of f is

CDa+f(t) =
1

Γ (n− q)

∫ t

a

(t− s)n−q−1f (n)(s)ds,

where Γ is a Gamma function which, defined via the Euler integral, is Γ (x) =
∫∞
0

tx−1e−tdt (x > 0).

Notation 2 The fractional-order Caputo derivative of order q with starting point 0 will be denoted by Dq
∗ here-

after.

Consider the initial value problem for the following IFDEs of the Caputo type:

Dq
∗x(t) = f(t, x(t)), for t ∈ I = [0, T ] \ {tk}Nk=1,

x(t+k ) = x(t−k ) +∆k

∣∣
t=tk

, tk ∈ I, k = 1, 2, ..., N,

x(0) = x0,

(1)

where f : I×Rn → Rn, ∆k : R → R, x0 ∈ Rn, 0 = t0 < t1 < · · · < tN < tN+1 = T , and x(t+k ) = limδ↓0 x(tk+δ)

and x(t−k ) = limδ↑0 x(tk − δ) represent the right and left limits of x(t) at t = tk.
Because the use of Caputo’s derivative, in (1) the initial conditions can be considered as that for classical

ordinary differential equations [31].
The existence of solutions of the Impulsive Fractional-order Problem (IFP) (1) is given by the following

theorem.

Theorem 1 [25] Assume that:

(H1) f : I ×Rn → Rn is uniformly continuous and globally Lipschitz in x for t ∈ [0, T ].
(H2) There exists a constant M > 0 such that |f(t, u)| ≤ M for each t ∈ I and each u ∈ R.

(H3) The functions ∆k : R → R are continuous and there exists a constant M∗ > 0 such that |∆k(u)| ≤ M∗

for all u ∈ R, k = 1, 2, ..., N .

Then, the IVP (1) admits a unique solution on I.
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For more details, see also [6,24].

2.2 Stability of fixed points

Consider the nonlinear system

Dq
∗x = f(x),

let X∗ be an equilibrium, JX∗ be the Jacobian matrix J = ∂f/∂x evaluated at X∗, and Λ be the spectrum
of all eigenvalues of J .

Theorem 2 [32,33] Equilibrium X∗ is

-asymptotically stable iff | arg(Λ)| > qπ/2;
-stable iff either is asymptotically stable, or its critical eigenvalues satisfying | arg(Λ)| = qπ/2 have geometric

multiplicity one.

The function arg(λ) ∈ (−π, pi], λ ∈ C, is the principal branch of the set-valued function Arg(λ), which
can be determined with e.g. the Matlab atan2 function.
If there exists some eigenvalue λ for which

| arg(eig(λ))| < qπ/2,

then X∗ is unstable. The inequality represents a necessary condition for a chaotic behavior [33].

2.3 Generalized Hamiltonian energy

The Helmholtz theorem (or fundamental theorem of vector calculus) [34] allows to decompose a smooth
vector field, which defines most physical systems such the Lorenz, Chen, Rössler systems by a sum of two
vectors: an irrotational part (curl-free) and a solenoidal part (divergence-free): f = fc + fd. Thus, fd carries
the divergence of f (i.e. curl(fd) = 0), while fc takes account of the whole rotor of f (i.e. div(fc) = 0). The
energy storage corresponds to fc, while the energy consumption corresponds to fd.

As described in [35], using Helmoltz's theorem, it is possible to find a specific function with the char-
acteristic of energy (generalized Hamiltonian), H, which describes the absorbtion or dissipation of energy
in a chaotic system. Therefore, it is possible to describe the dynamics of the IFDE (1) in terms of the
Hamiltonian energy required by the system to stabilize chaos therein.

The (non-unique) Hamiltonian function can be found by solving the following PDE [35,36]:

∇HT fc(x) = 0, (2)

which leads to solving the system

dx1
f1
c (x)

=
dx2
f2
c (x)

= · · · = dxn
fnc (x)

. (3)

where fc = (f1
c , f

2
c , ..., f

n
c )

T .
The derivative of H, which indicates the rate of change of the energy H, is obtained as

Ḣ =
dH

dt
= ∇HT fd(x). (4)

3 Chaos suppression in impulsive fractional-order systems

Consider the autonomous IFDE (1), along with constant impulses (∆k,1,∆k,2, · · · ,∆k,p)
T periodically ap-

plied to p ≤ n variables xi at different moments of time tk,i, i = 1, 2, · · · , p ≤ n, k = 1, 2, ..., N ; more
precisely,

Dq
∗x(t) = f(x), for t ∈ I = [0, T ] \ {tk,i}Nk=1, i = 1, 2, ..., p ≤ n,

xi(t
+
k,i) = xi(t

−
k,i) +∆k,i

∣∣
t=tk,i

, tk,i ∈ I, k = 1, 2, ..., N,

x(0) = x0,

(5)

where f : Rn → Rn, ∆k,i : R → R, i = 1, 2, ..., p ≤ n, k = 1, 2, ..., N , x0 ∈ R.



4 Marius-F. Danca et al.

Generally, IFDE (1) refers to simultaneously applying impulses operators ∆k,i to some variables at the
time moments tk, k = 1, 2, ..., N . Here, consider a more general case when impulses ∆k,i can be applied at
different time moments tk,i, k = 1, 2, ..., N , for each variable xi,i = 1, 2, ..., p ≤ n.

To implement this kind of impulses, one may associate to each variable xi its own strictly increasing
sequence of time moments tk,i = k × mi × h, k = 1, 2, ..., N , with N = T/h, mi some positive integer and
h > 0 the step-size of the utilized numerical method to integrate the IVP (5). Thus, for every variable xi,
I will be partitioned as follows: 0 = t0i = 0mih < t1,i = 1mih < t2,i = 2mih < t3,i = 3mih < · · · < tN,i =
Nmih < tN+1,i = (N + 1)mih = T , i ∈ {1, 2, ..., p}. In this way, variables xi will be impulsioned at different
(possible identical) time moments: tk,i ̸= tk,j , for i ̸= j and i, j ∈ {1, 2, ..., p}, 1 ≤ k ≤ N .

Notation 3 For simplicity, tk,i will be denoted by ti, and ∆k,i by ∆i, i ∈ {1, ..., p}, while ∆i = 0 correspond to

non-impulsed variables.

For example, for n = 3, by (∆1, 0,∆3)
T and (t1, t3) = (kh, 2kh) one understands that only x1 and x3 are

impulsed at the time moments kh and 2kh, m1 = 1 and m3 = 2, k = 1, 2, ..., N , with ∆1 and ∆3, respectively.
The existence and uniqueness of solutions to (5) is ensured by Theorem 1.
If the considered nonlinear dynamical system has unstable equilibria and evolves chaotically, it can be

shown numerically that there are several possible choices of impulses, considered as control applied to xi
at right time moments tki, such that chaos can be controlled for stabilizing the unstable equilibria. As a
result, after some transients, the trajectory reaches some stable equilibrium.

The stability of the controlled equilibria is checked with Theorem 2, and verified with the monotony of
a generalized energy H, time series and phase plots.

3.1 Application

In this paper, a constant solution refers to a numerical solution determined within 6 decimals because of
the numerical accuracy and digital resolution, namely the used software (Matlab) and the integration ABM
method (see Fig. 1, where the control is turned on at t = t1 and turned out at t = t2). As can be seen in the
zoomed rectangle in Fig. 1, 6 decimals are enough to ensure a reasonable error of 1E−6 for numerical studies.
Therefore, with the integration step-size h = 0.004 chosen in this paper, the obtained trajectories can be
considered constant within the time interval I = [0, 100]. Accordingly, N = T/h = 100/0.004 = 25, 000.

The stability of equilibria is verified with Theorem 2. After applying the impulsive chaos control, and after
transients are removed, trajectories become constant and reach a point close to one unstable equilibrium.

the stability of the reached points is verified numerically
In order to preserve the Time-history dependence of solutions, required by Caputo’s fractional-derivative,

the multi-step predictor-corrector Adams-Bashforth-Moulton method for FDEs [11] is utilized here is adopted),
which at every solution point takes account on the entire previous points.

To implement the impulses, at every kth step, k = 1, 2, ..., N , after the ith variable xk,i is calculated,
the following tests are added: if k mod mi = 0, for i = 1, ..., p, then the variable xk,i will be modified as
xk,i = xk−1,i +∆i.

Next, consider the fractional Lorenz system with the commensurate fractional-order q = 0.9951, given
by

D0.995
∗ x1 = a(x2 − x1),

D0.995
∗ x2 = x1(b− x3)− x2,

D0.995
∗ x3 = x1x2 − cx3,

(6)

where a, b, c are the standard Lorenz parameters: a = 10, c = 8/3 and b is chosen in some chaotic windows
(see the bifurcation diagram in Fig. 2). With b = 28, the system evolves chaotically (Fig. 3).

For all simulations, x0 is chosen x0 = (0.1, 0.1, 0.1).
The equilibria of the unperturbed system are

X∗
1,2 = ±

(√
c(b− 1),

√
c(b− 1), c− 1

)T
= ±(8.46, 8.46, 27)T .

The spectrum of eigenvalues of X∗
1 = (8.46, 8.46, 27)T is Λ = {λ1 = −13.846, λ2 = 0.090 − 10.166i, λ3 =

0.090 + 10.166i} with arguments {π,−1.5620, 1.5620}. Since there exist the eigenvalues λ2,3, for which
|arg(λ2,3)| − 0.995π/2 = 1.5620− 1.5787 < 0, by Theorem 2, X∗

1 is unstable. The same reasonings apply to
X∗

2 . Therefore, for b = 28 both equlibria X∗
1,2 are unstable and the system behaves chaotically.

1 The fractional-order has been chosen close to 1, such that chaos is as strong as possible (note that the minimum order
for the fractional-order Lorenz system to be chaotic is q = 0.99 [37]).
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3.2 Case 1: identical impulses at the same time moments

Let (∆1,∆2,∆3)
T = (∆,∆,∆)T be applied to all variables at the same time moments (t1, t2, t3) = (kh, kh, kh),

k = 1, 2, ..., N . For example, with identical impulses (∆1,∆2,∆3)
T = (0.04, 0.04, 0.04)T being applied at the

same time moments: (t1, t2, t3) = (kh, kh, kh), k = 1, 2, ..., N , to all variables, which means that every in-
tegration step is h, all variables are under the effect of the same impulse 0.04. One obtains the results
presented in Fig. 4 (a) (phase plot) and Figs. 4 (b)-(d) (time series). These indicate that, after some short
transients, the trajectory reaches the point Y ∗

1 = (y∗1 , y
∗
2 , y

∗
3)

T = (8.58, 7.61, 28.22)T .
By applying the stability criteria to the point Y ∗

1 , one obtains Λ = {−13.152,−0.257−10.469i,−0.2572+
10.4691i} with arguments {π,±1.5954} and | arg(Λ)| > qπ/2. Therefore, the point reached by the trajectory
under impulsive control, Y ∗

1 , is stable. The Euclidean distance in the phase space between X∗
1 and Y ∗

1 ,
d(X∗

1 , Y
∗
1 ) = |X∗

1 − Y ∗
1 | < 1.5. This relatively large distance is due to the impulsive effect on the system

variables, which had slightly changed the system dynamics. However, it is relatively small as compared to
the size of the chaotic attractor in the phase space which, for b = 28, can be embedded in the sphere (see
Fig.5)2

S = {(x1, x2, x3) ∈ R3 : x21 + x22 + (x3 − a− b)2 ≤ R2

with R = (a + b)c/
√
4(c− 1) = 39.25 and center (0, 0, a + b) [38]. Thus, d(X∗

1 , Y
∗
1 )/2R ≈ 0.01, and the

impulsive chaos control can be considered as stabilizing the unstable equilibrium X∗
1 .

The best way to choose the impulses (∆,∆,∆)T in the case of identical impulses is to build a bifurcation
diagram with bifurcation parameter ∆ (see Fig. 6, where ∆ ∈ [−0.5, 0.5]).

3.3 Case 2: All variables with different impulses at different time moments

For (∆1,∆2,∆3)
T = (0.01,−0.05, 0.02)T and (t1, t2, t3) = (3kh, kh, 2kh), the controlled trajectory reaches

the stable point Y ∗
2 = (−8.53,−8.58, 28.40)T (see Fig.7) situated at distance d(X∗

2 , Y
∗
2 ) < 1.5.

3.4 Case 3: Some variables with different impulses at different time moments

Consider the case (∆1,∆2,∆3)
T = (0,−0.02, 0.02)T applied at moments (t2, t3) = (kh, 2kh), to variables x2

and x3. One obtains Y ∗
2 = (−8.29,−8.29, 27.58)T (see Fig. 8). In this case, Y ∗

2 is closer to X∗
2 : d(X

∗
1 , Y

∗
1 ) =

|X∗
1 − Y ∗

2 | < 0.7 and, again, Y ∗ verifies the stable criterion.

3.5 Case 4: A single variable

Use (∆1,∆2,∆3)
T = (0, 0, 0.05)T , t3 = kh. Then, the impulsed system reaches the stable point Y ∗

2 =
(−7.74,−7.74, 26.97) (see Fig. 9). Now, d(X∗

2 , Y
∗
2 ) < 1.1.

3.6 Energy approach

For the Lorenz system, the Helmoltz decomposition yields [35,36]

fc(x1, x2, x3) =

 ax2
bx1 − x1x3

x1x2

 , fd(x1, x2, x3) =

−ax1
−x2
−cx3

 .

In solving practical problems, fd can be determined by having all the terms in f , which contribute to
divergence, and the rest of the terms are represented by fc.

To calculate H, one needs to solve the linear partial differential equation (see (2)):

∇HT fc(x1, x2, x3) = 0,

which leads to the following system of equations (see (3))

dx1
ax2

=
dx2

bx1 − x1x3
=

dx3
x1x2

,

whose one solution is

2 Once the trajectory enters the sphere, it remains inside.
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Table 1 Average energyH, average of derivative energy Ḣ for the impulsive system (1), and average energy of non-impulsive

system, H0.

b ∆ tk H Ḣ H0 Figure

28 (0.04, 0.04, 0.04)T (kh, kh, kh) 324 -96 270 Fig. 10 (a)

28 (−0.04,−0.04,−0.04)T (kh, kh, kh) 300 496 270 Fig 10 (b)

H(x1, x2, x3) =
1

2

(
− b

a
x21 + x22 + x23

)
. (7)

Unlike the H given by (7), the Lyapunov function commonly used for analyzing the Lorenz system is a
quadratic positive definite function V (x1, x2, x3) = bx21 + ax22 + a(x3 − 2b)2, which might fail to unveil some
system dynamical characteristics.

The derivative of H, which gives the rate of energy changes, can be obtained by imposing the condition
that the change of the energy along some trajectory is exclusively due to the term fd (see (4)), yelding

Ḣ(x1, x2, x3) = ∇HT fd(x1, x2, x3) = bx21 − x22 − cx23. (8)

Next, the average of H, H, and the average of Ḣ, Ḣ, are calculated after their first transients have been
removed. The energy is considered in any unit, so Ḣ can be considered as describing the energy changes per
unit time [35].

Two representative cases have been considered for a clear understanding of what happens with the
energy while the impulses are applied.

In Fig. 10 (a), H and Ḣ are plotted for the impulses (∆1,∆2,∆3)
T = (0.04, 0.04, 0.04)T applied at

moments (t1, t2, t3) = (kh, kh, kh). In Fig. 10 (b), the impulses (∆1,∆2,∆3)
T = (−0.04,−0.04,−0.04)T are

applied at time moments (t1, t2, t3) = (kh, kh, kh). The results are summarized in Table 1.
As expected for the obtained equilibria Y ∗

1,2, after some transients the energy H dissipated or absorbed

by the system remains constant, just like the variation of Ḣ. The variation of the energy at local extrema
of Ḣ is 0, while the maximum (minimum) variation of the energy appear before (after) the energy attaints
a local maximum (se the zoomed detail in Fig. 10 (c)). As expected, this normally happens at extrema of
the trajectories, where the vanished derivative of H, regarded as a 0 kinetic-like energy, implies a maximum
potential-like energy in these extrema of trajectories, capable of driving the trajectory further to the next
extremum.

Note that for equilibria Y ∗
1,2 the average energy of the impulsive system is higher than the non-impulsive

system, denoted by H0 (see Table 1, lines 1,2). Also, in these cases, positive impulses determine a negative
variation of energy (Table 1, line 1), which means that the system dissipates energy to maintain the trajectory
at the stable equilibrium Y ∗. Negative impulses (Table 1, line 2) determine a positive variation of energy
to maintain the trajectory at the obtained stable equilibrium Y ∗. This means that the system needs energy
in both cases.

No concluding results have been obtained if the ∆ components have opposite signs.

4 Discussion

In the above, it was shown numerically that the chaotic behaviors in fractional-order systems can be stabi-
lized by stabilizing their unstable equilibria with periodic constant impulses applied to all or some variables,
and the obtained trajectories becoming constant after transients being removed.

However, if for Lorenz system one considers b = 120, for which the system still presents a chaotic behavior
(see Fig. 2), with appropriate constant impulses (∆,∆,∆)T chosen from the bifurcation diagram in Fig. 12
with ∆ bifurcation parameter, the chaotic behavior can also be transformed to possible “stable cycles”. For
example, for (∆1,∆2,∆3)

T = (0.0665, 0.0665, 0.0665)T applied at time moments (t1, t2, t3) = (kh, kh, kh),
k = 1, 2, ..., N , one obtains the trajectory shown in Fig. 11 (a). Figs. 11 (b)-(d) present the time series of
the three variables x1,2,3.

As Figure 6 shows, in the case of equal impulses ∆, for b = 28 the chaos can be stabilized, theoretically
even for no matter how large values of impulse values ∆. However, positive or negative large values could
lead to results without physical meanings. Also, as expected and as Figure 6 reveals, too small values of
∆ (the small interval around origin) cannot stabilize the chaos. For the case b = 120 (see Figure 12), the
windows for ∆ where chaos can be stabilized are much more narrow.
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The energy approach (Figs. 11 (e)-(f)) indicates a possible periodic behavior. However, this result is in
contradiction with the following theorem.

Theorem 3 [9,39] The autonomous fractional-order differential equation

Dq
∗x(t) = f(x(t)),

with f being some nonlinear function, cannot have any non-constant exact smooth periodic solution.

A similar result exists for non-autonomous fractional-order systems (see e.g. [9]).
Therefore, even numerical simulations sometimes suggest that in fractional-order systems there exist

“stable cycles”, they are only approximations of some non-exactly periodic oscillations, which always contain
non-periodic transient terms (see e.g. [39]).

It is well known nowadays that, probably due to the time-history phenomenon of solutions of FDEs
[39], autonomous fractional-order systems modeled by Caputo, Riemann-Liouville or Grünwald-Letnikov
derivatives, cannot evolve along exact non-constant periodic trajectories for any finite time, except the
cases when the lower terminal of the fractional derivative approaches infinity [40]. Thus, if the difference
between the lower limit and the upper limit in the concerned derivative are chosen large enough, due to the
memory dependence of the derivative, the obtained orbit could be periodic. In other words, while finite-time
exact periodic solutions cannot be found in Caputo fractional-order dynamical systems, long-time periodic
solutions might be possible [40–42].

For the case of IFDEs, to the best of our knowledge, there exist no results on the existence of exact
non-constant periodic solutions3.

However, the following is a result regarding the non-existence of periodic solutions to the IFDE (1).
In (1) let T = (N + 1)h. The objective now is to find a periodic solution of (1) satisfying x(0) = x(T ).

Following [43], by a solution of (1) means a function x(t) that is continuous in x0 ∈ Rn, t ∈ [0, T ] \ {kh | k =
1, · · · , N}, and left continuous in t at the impulsive points kh, and satisfying

x(t) = x0 +
k∑

i=1

∆i +
1

Γ (q)

∫ t

0

(t− s)q−1f(s, x(s))ds, t ∈ (tk, tk+1]. (9)

It is well known that under the above assumptions, (9) has a unique solution x(x0, t) on [0, T ].
Now the following theorem can be established.

Theorem 4 Suppose that assumptions (H1),(H2) are satisfied. If∥∥∥∑N
k=1 ∆k

∥∥∥
(N + 1)q

>
Mhq

Γ (q + 1)
, (10)

then (1) has no (periodic) solutions satisfying x(0) = x(T ).

Proof One needs to solve

x(0) = x(T ) = x0 +
N∑
i=1

∆i +
1

Γ (q)

∫ T

0

(T − s)q−1f(s, x(s))ds,

which is equivalent to

−
N∑

k=1

∆k =
1

Γ (q)

∫ (N+1)h

0

((N + 1)h− s)q−1f(s, x(x0, s))ds. (11)

This gives ∥∥∥∥∥
N∑

k=1

∆k

∥∥∥∥∥ ≤ 1

Γ (q)

∫ (N+1)h

0

((N + 1)h− s)q−1|f(s, x(x0, s))|ds

≤ M(N + 1)qhq

Γ (q + 1)
,

contradicting (10). The proof is thus completed.
⊓⊔

3 Some related works will be published elsewhere later.
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Remark 1 Theorem 4 just states nonexistence of solutions satisfying x(0) = x(T ). This is the so-called
periodic boundary value condition on [0, T ]. On the other hand, contrary to FDEs, which does not have
periodic exact non-constant solutions, for the IFDE (1), if condition (4.2) is not satisfied, then the IFDE
may have a solution on [0, T ] satisfying x(0) = x(T ), under some additional conditions.

As example, let consider the case for b = 120 presented in Fig. 11. As can be observed, the trajectory
can be considered as embedded within the domain

C = {(x1, x2, x3) ∈ R3 : −50 ≤ x1 ≤ 50, −100 ≤ x2 ≤ 100, 50 ≤ x3 ≤ 200}.

Therefore,

M = max
x∈C

∥f(x)∥ = max
x∈C

max{|a(x2 − x1)|, |x1(b− x3)− x2|, |x1x2 − cx3|}
.
= 533.333.

For h = 0.004, q = 0.995, by applying (∆1,∆2,∆3 = (0.0665, 0.0665, 0.0665) at time moments kh, k =
1, 2, ..., N and N = 25000 one obtains

∥∥∥∑N
k=1 ∆k

∥∥∥
(N + 1)q

= 0.070 < 2.199 =
Mhq

Γ (q + 1)
.

Therefore, Theorem 4 rules out that for this example it is possible that the obtained impulsed trajectory
drawn in Fig. 11 could be a real stable cycle.

While the bifurcation diagram in Fig. 12 indicates that the chance to choose randomly values for
(∆,∆,∆)T to stabilize chaos for b = 120 is rather small, the situation is totally different in the case of
b = 28, where the bifurcation diagram shown in Fig. 6 indicates that random impulse values, applied
following some time moments partition, have more chances to stabilize the chaotic behavior of the system.

Conclusion

In this paper it has been shown numerically that for appropriate impulses and time moments, chaos in
impulsive fractional-order differential equations can be stabilized near their unstable equilibria. The unstable
equilibria are approximated by stable constant trajectories. The stability of the obtained equilibria is verified
numerically. The advantages of the proposed impulsive control, which can be applied to non-commensurate
order systems, is that it can act only on some of the state variables and also at different time moments. The
disadvantage is the fact that, as all impulsive control techniques, the his applicability is mostly theoretical.
In a practical system, measurement noise always exists. Therefore, considering the measurement noise in the
numerical results, the proposed impulsive control could reveal his possible application in real systems. This
topic will be investigated in future research. The utilized numerical method to integrate the initial value
problems is the Adams-Bashforth-Moulton algorithm for fractional-order differential equations. A theorem
related to the non-existence of periodic solutions to impulsive fractional-order differential equations has
also been presented and proved, which provides some necessary conditions for the periodicity of solutions
to IFDE. Thus, compared with FDEs, where exact non-constant periodic solutions cannot exist, the new
finding is that for IFDEs these kind of solutions are indeed possible. The results have been verified for
the fractional-order Lorenz system, but the control algorithm applies to a large class of systems modeling
Chen’s system, Lotka-Volterra system, Rössler system, Chua system and so on.
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Fig. 1 Time series of the variable x3 of the Lorenz system (6). For t ∈ [t1, t2], the variable, denoted y∗3 , approximates the
value 28.22. The zoomed rectangle reveals the approximation error determined in 6 decimals.
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Fig. 2 Bifurcation diagram of the Lorenz system (6), with bifurcation parameter b .
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Fig. 3 Chaotic attractor of the fractional-order Lorenz system (6) with b = 28.

Fig. 4 Stable equilibrium Y ∗
1 obtained under control with impulses (∆1,∆2,∆3)T = (0.04, 0.04, 0.04)T applied at moments

(t1, t2, t3) = (kh, kh, kh), k = 1, 2, ..., N . a) Phase portrait and zoomed detail revealing the distance between the unstable
equilibria X∗

1 and Y ∗
1 . b) Time series of x1. c) Time series of x2. d) Time series of x3.
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Fig. 5 The chaotic Lorenz attractor, with b = 28, included in the sphere x2
1 + x2

2 + (x3 − a− b)2 ≤ 39.25.

Fig. 6 Bifurcation diagram of the fractional-order Lorenz system (6) with b = 28 for (∆1,∆2,∆3)T = (∆,∆,∆)T bifurca-
tion parameter.
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Fig. 7 Stable equilibrium Y ∗
2 obtained under control with impulses (∆1,∆2,∆3)T = (0.01,−0.05, 0.02)T applied at mo-

ments t1, t2, t3) = (3kh, kh, 2kh), k = 1, 2, ..., N . a) Phase portrait. b) Time series of x1. c) Time series of x2. d) Time series
of x3.

Fig. 8 Stable equilibrium Y ∗
2 obtained under control with impulses (∆1,∆2,∆3)T = (0,−0.02, 0.02)T applied at moments

(t2, t3) = (kh, 2kh). a) Phase portrait. b)-d) Time series.
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Fig. 9 Stable equilibrium Y ∗
2 obtained under control with impulses (∆1,∆2,∆3)T = (0,−0.02, 0.02)T applied at moments

(t2, t3) = (kh, kh) (only variables x3 is impulsed). a) Phase portrait. b)-d) Time series.
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Fig. 10 Generalized energy H, its variation Ḣ, and their averages. a) impulses (∆1,∆2,∆3)T = (0, 04, 0.04, 0.04)T applied
at moments (t1, t2, t3) = (kh, kh, kh). b) impulses (∆1,∆2,∆3)T = (−0, 04,−0.04,−0.04)T applied at moments (t1, t2, t3) =
(kh, kh, kh).
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Fig. 11 Possible stable cycle, for b = 120, obtained under control with (∆1,∆2,∆3)T = (0.0665, 0.0665, 0.0665)T and
(t1, t2, t3) = (kh, kh, kh). a) Phase plot. b)-d) Time series of the three components x1,2,3. e) Generalized energy H. f)

Derivation of the generalized energy Ḣ.

Fig. 12 Bifurcation diagram of the Lorenz system (6) with b = 120 for (∆1,∆2,∆3)T = (∆,∆,∆)T bifurcation parameter.


