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Abstract

The problem of numerically approximating a class of dynamical sys-
tems with discontinuous state variables by forward Euler method for dif-
ferential inclusions, viewed as dynamical systems, is discussed in this pa-
per. It is shown that such discontinuous initial value problems may be
transformed into set-valued problems and then approximated by special
numerical methods for di¤erential inclusions which may be viewed as (ide-
ally continuous) dynamical systems.
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1 Introduction

Consider the following initial value problem (i.v.p.) of a di¤erential equation
with discontinuous right-hand side:

_x(t) = f(x(t)) := g(x(t)) +
nX
i=1

�i sgnxi(t) e
i; x(0) = x0; t 2 I = [0;1); (1)

where f; g : Rn ! Rn are single-valued vector functions, �i 2 R and ei denote
the ith canonical unit vectors in Rn. The function f is assumed piecewise con-
tinuous, i.e., continuous on a �nite number of open domains Di � R; i = 1; ::; p;
in each of which f is continuous up to a certain order, and has �nite (possibly
di¤erent) limits from di¤erent boundary points (i.e., bounded discontinuities).
The basic properties of this class of discontinuous dynamical systems, called

switching systems, are now being intensively studied, despite the tedious work
necessary for investigating the underlying i.v.p. Generally, many physical laws
are expressed by this kind of discontinuity and occur in real-world applications
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such as the discontinuous dependence of friction force on velocity in the case of
dry friction, oscillating systems with combined dry and viscous damping e¤ects,
chaotic circuits, alternatively forced vibrations, braking processes with locking
phases, convex optimizations, non-smooth control systems synthesis, uncertain
systems, etc. (see e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], and some references
therein).
One way to deal with the model (1) could be to apply an approximation

of the discontinuous functions f , in the proximity of the discontinuities, with
suitable continuous functions. In doing so, the i.v.p. becomes a continuous one
[12] and the many available tools for continuous and smooth dynamical systems
can be employed. Another approach could be to use numerical approximations
of the discontinuous problems.
In fact, for the case of a continuous dynamical system, numerical approxima-

tion of the underlying system is well known (see e.g. [13]), which will be followed
in this paper. More precisely, the approach of numerically approximating the
discontinuous dynamical system, modeled as the i.v.p. by (1), is studied. This
problem is important, since almost all tools for dynamical systems employ nu-
merical methods (see e.g. [14, 15, 16, 17]). In other words, the basic properties
of the dynamical system considered in this paper will be analyzed based on its
numerical approximation. Due to the discontinuity of the right-hand side, the
i.v.p. (1) may not have any solution, therefore a di¤erent concept of �solution�
must be de�ned and used. For this purpose, the i.v.p. (1) will be transformed
into a di¤erential inclusion problem via the well-known Filippov regularization
[18]. Having enough regularity, the new i.v.p. so obtained may have several
generalized solutions, which can be computed by numerical methods.
In this paper, the classical explicit Euler method will be employed for dif-

ferential inclusions, under the assumption that the switching system modeled
by (1) can be numerically well-approximated using the explicit Euler method.
This could be considered as a discrete dynamical system that well approximates
the original switching dynamical system.
The paper is organized as follows. Section 2 presents some assumptions on

f under which the i.v.p. (1) de�nes a switching dyanmical system. Section 3
reviews the explicit Euler method and Section 4 discusses the assumptions on f
under which the switching dyanmical system (1) can be well-approximated by
the Euler method. Section 5 concludes the paper. Throughout, three examples
are given with simulations.

2 Switching dynamical systems

In order to de�ne the class of dynamical systems modeled by the i.v.p. (1), a
few notions are �rst introduced, with some preliminary results.
One of the basic assumptions is the so-called growth condition, which is used

here instead of requiring the global boundedness of the right-hand side [19, 20].

De�nition 1 A set-valued function F is said to satisfy a growth condition, if
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there exist constants K1;K2 � 0 such that

k � k� K1 k x k +K2; (2)

for all � 2 F (x); x 2 Rn:

Due to the discontinuity of the right-hand side, the i.v.p. (1) may not have
any solution. For example, consider the following discontinuous problem

_x = 2� 3 sgn(x); (3)

which has solutions

x(t) =

�
5 t+ C1; x < 0
�t+ C2; x > 0:

As t increases, these classical solutions tend to the line x = 0, but they cannot
continue to evolve along this line since the function x(t) = 0 does not satisfy
the equation. Thus, there is no classical solution starting from 0.
To introduce a sensible solution to the above i.v.p., Filippov [18] proposed

the idea of restarting the i.v.p. as the following di¤erential inclusion:

x(t) 2 F (x(t)); x(0) = x0; for a:a: t 2 I; (4)

where F : Rn =) Rn is a set-valued vector function de�ned on the set of all
subsets of Rn. The simplest de�nition of F is

F (x) =
\
">0

\
�(M)=0

conv(ffz 2 Rn :k x k� "gnM)); (5)

where � is the Lebesgue measure, M is the set of all discontinuity points,
conv(�) is the closed convex hull, and f is a single-valued function which is dis-
continuous with respect to the state variable. At the points where the function
f is continuous, F (x) consists of one point, which coincides with the value of
f at this point. At the discontinuity points, the set F (x) is a subset of Rn
given by (5).
In order to justify the use of the Filippov regularization in physical systems,

" must be small enough, so that the motion of the physical system can be
arbitrarily close to a certain solution of the di¤erential inclusion. As an example,
consider the set-valued version of the usual a sign function, i.e., the set-valued
Sgn function de�ned by

Sgn(x) =

8<: f�1g; x < 0
[�1; 1]; x = 0
f+1g; x > 0:

Using Filippov regularization, the i.v.p. (1) becomes

l _x(t) 2 F (x(t)) := g(x(t)) +
nX
i=1

�i Sgnxi(t) e
i;

x(0) = x0; for a:a: t 2 I = [0;1): (6)
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Notation 2 Let L denote the class of functions f de�ned by (1) with Lipschitz
continuous g, for which the corresponding set-valued form F satis�es a growth
condition.

De�nition 3 [18] A generalized (Filippov) solution to the i.v.p. (1) is an ab-
solutely continuous function, x : I �! Rn, satisfying (6) a:e: on I.

Basic properties of Filippov solutions and background of di¤erential inclu-
sions can be referred to, e.g., [19, 20]. Under Filippov regularization, the i.v.p.
(1) may have several generalized (Filippov) solutions.

De�nition 4 The i.v.p. (1) is said to de�ne a generalized switching dynamical
system on Rn if, for every x0 2 Rn, there exists a solution of the i.v.p. (1)
de�ned for a:a: t 2 I. Furthermore, if the solution is a:e: unique, then the i.v.p.
(1) is said to de�ne a switching dynamical system.

A condition on f under which the i.v.p. (1) de�nes a switching dynamical
system is given by the following theorem.

Theorem 5 [21] The i.v.p. (1) with f 2 L de�nes a generalized switching
dynamical system. If, moreover, all the coe¢ cients � are nonnegative, then the
i.v.p. (1) de�nes a switching dynamical system.

Proof. In [21], it is proved that if f 2 L, the i.v.p. (1) has at least one
generalized solution, while if all the coe¢ cients � are non-positive, then the
i.v.p. (1) has a unique solution.
Using the above result, the transformed i.v.p. (3) becomes

_x 2 2� 3 Sgn(x):

Since the right-hand side belongs to class L, the system has a unique positive
generalized solution de�ning a switching dynamical system: if x0 > 0 then
x(t) = �t + x0 for t < x0 and x(t) = 0 for t � x0; namely, the solution can
be continuously prolonged from 0. Also, there is a unique negative solution for
x00 < 0: x(t) = 5t+ x

0
0 for t < x

0
0, and x(t) = 0 for t � x00 (Figure 5).

Figure 1

Next, consider the following discontinuous model, which is a generalization
of Chua�s circuit ([21, 22])

_x1 = �2:57x1 + 9x2 + sgn(x1)
_x2 = x1 � x2 + x3
_x3 = �� x2;

(7)
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where � is the control parameter. It is easy to check that (7) models a gener-
alized switching dynamical system, since the positiveness of the � coe¢ cients
and the Lipschitz continuity of the g function (Theorem 5)

g(x) = (�2:57x1 + 9x2; x1 � x2 + x3; � � x2 )T :

The following system is a simpli�ed model of the regulation system of a
steam turbine [23]

_x1 = x3 � x1 � sgn(x2)
_x2 = x1 � x2
_x3 = �x2;

(8)

which de�nes a switching dynamical system.
A modi�ed mathematical description of the Chen system [24] has the fol-

lowing form

_x1 = a(x2 � x1)� 0:5 sgn(x1)
_x2 = x1(c� a� x3) + cd x2 + 0:5 sgn(x2)
_x3 = x1x2 � b x3 + 3 sgn(x1); (a; b; c; d > 0);

(9)

which de�nes a generalized switching dynamical system, since not all � co-
e¢ cients are negative. The control parameter is c, with other parameters
a = 1:18; d = 0:1; b = 0:168.

3 Explicit Euler method for di¤erential inclu-
sions

In order to numerically solve the i.v.p. (1), some e¤ective numerical methods
for solving the i.v.p. (6) are needed. In the following, the simplest set-valued
version of the explicit Euler method for di¤erential equations is reviewed.
Consider the general case of a non-autonomous di¤erential inclusion

_x(t) 2 F (t; x(t)); x(t0) = x0; for a:a: t 2 [t0; T ]: (10)

This method consists of a replacement of the original di¤erence inclusion on the
interval [t0; T ] by a sequence of discrete inclusions on a sequence of grids (see
[25, 26, 27, 28, 29, 30] and some references therein)

t0 = t
N
0 < t

N
1 < � � � < tNN = T;

with step-size

h =
T � t0
N

; (N 2 N0 � N) ;

and in the subsequent numerical solutions of these discrete inclusions. This
results in a sequence �

�N
�
N 2N0 ;
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of grid functions
�N =

�
�N0 ; �

N
1 ; � � � ; �NN

�
; N 2 N0:

Here, N0 denotes a subsequence of N converging to in�nity. For simplicity, N
is use as the index. The simplest explicit digitization method for di¤erential
inclusions is the following explicit Euler method

�k+1 = �k + h �k; �k 2 F (tk; �k); k = 0; 1; � � � ; N � 1; �0 = x0: (11)

The convergence of this Euler method, when being applied to the i.v.p. (6)
with T = 1 for f 2 L, can be found in [21]. Generally, the solution of the
inclusion

�k 2 F (tk; �k)

is not unique. So, it is usually randomly selected, as in the present paper, or by
a suitable optimization (see e.g. [30]). As an example, consider the generalized
Chua switching dynamical system (7). The corresponding set-valued i.v.p. of
the di¤erential inclusion is

_x1 2 �2:57x1 + 9x2 + Sgn(x1)
_x2 = x1 � x2 + x3
_x3 = �� x2:

A chaotic trajectory is plotted in Figure 5. For the switching dynamical
system modeled by (8), a stable trajectory is drawn in Figure 5, while a chaotic
trajectory of the system (9), with c = 9:7, is plotted in Figure 5 and 5. These
phase portraits and time series were plotted by using the explicit Euler method.
The trajectories present some corners, typical for �rst-order convergence meth-
ods (like the explicit Euler method) when they cross the discontinuity surfaces.

Figures 2,3,4,5

4 Numerical approximation of the i.v.p. (1.1)

Consider a sequence fyngn2N satisfying

yn+1 2 G(yn+1); y(0) = y0 2 Rn; (12)

where G : Rn =) Rn is a set-valued map.
Using de�nition 3 and 4, one can consider that the set-valued i.v.p. (12)

de�nes a discrete dynamical system.

De�nition 6 The i.v.p. (12) is said to de�ne a generalized dynamical system
on Rn if, for every y0 2 Rn, there is a solution de�ned for all n � 0. Further-
more, if this solution is unique, then the i.v.p. (12) is said to de�ne a dynamical
system.
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If the sequence fyngn2N is generated by some numerical methods for solving
the i.v.p. (6) and is convergent, it is said that the underlying discontinuous i.v.p.
(1) is numerically approximated by the i.v.p. (12).
For a given step-size h, the discrete i.v.p. (12) can be transformed into

an ideally continuous one by using the following continuous piece-wise linear
function

y : I �! Rn;
so that in each interval [tj ; tj+1],

y(t) = yj +
1

h
(t� tj) (yj+1 � yj) ; tj � t � tj+1; j = 0; 1; � � � ; N � 1:

The existence of solutions of (12) is always guaranteed, while the uniqueness
has to be checked. Nevertheless, (12) always gives at least one generalized
dynamical system solution.
Now, consider the i.v.p. (1) with the corresponding di¤erential inclusion

(6). If we want to numerically approximate the i.v.p. with a discrete dynamical
system via some numerical method, e.g. the explicit Euler method, we have to
consider the condition on f , under which the numerical scheme (11) applied to
(6) has at least one solution. Using Theorem 5, we obtain the following main
result of this paper.

Theorem 7 Consider the i.v.p. (1) with f 2 L. In this case, the explicit
Euler method (11) de�nes a generalized dynamical system, which numerically
approximates the underlying dynamical system. Moreover, if all � coe¢ cients
are non-positive, then (11) de�nes a switching dynamical system.

Remark 8 In the case of numerically approximating a continuous dynami-
cal system, there exists a system whose i.v.p. does not de�ne a dynamical
system, even if the Euler method de�nes a dynamical system (e.g. the i.v.p.
_x = x2; x(0) = x0, whose solution exists only for t 6= 1=x0 ).

As an example, consider the i.v.p. (7). The forward Euler numerical ap-
proximation represents a discrete dynamical system, which is

x1n+1 2 x1n � 2:57x1n + 9x2n + Sgn(x1n)
= �1:57x1n + 9x2n + Sgn(x1n)

x2n+1 = x2n + x1n � x2n + x3n = x1n + x3n
x3n+1 = x3n � �x2n:

5 Conclusions

In this paper, we have proved that the class of switching dynamical systems
modeled by (1) with f 2 L can be numerically approximated by the explicit
Euler method.
There are a few questions remaining to be answered: 1) assuming that the

di¤erential inclusion (6) admits invariant sets (such as steady-state solutions, pe-
riodic solutions, quasi-periodic solutions, chaotic solutions, basins of attraction),
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does a numerical method for di¤erential inclusions possess the corresponding in-
variant sets? 2) assuming that the vector �eld de�ning the di¤erential inclusion
has a particular structural property, what are the numerical methods for di¤er-
ential inclusions that can inherit these structural properties? 3) what are the
conditions under which numerical orbits represent the true orbits (shadowing
theory; see [31] for the continuous case)?
Moreover, there are some interesting results that could be obtained, such as

synchronization of several chaotic switching dynamical systems [32], control of
discontinuous dynamical systems [33], and chaoti�cation of stable trajectories
of a switching dynamical system [34].
Finally, further analyzing various numerical approximation methods and ap-

plied them to more general non-smooth i.v.p. remains a challenging task for
future research.
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Figures caption

Figure 1. Two trajectories of the initial value problem (3).
Figure 2. A chaotic trajectory of the system (7) (three-dimensional plot).
Figure 3. A stable trajectory of the switching dynamical system (8) (time

series and phase portraits).
Figure 4. A chaotic trajectory of the switching dynamical system (9) (three-

dimensional plot)
Figure 5. The same trajectory as in Figure 4 (time series and phase portraits)
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