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Abstract In this paper we prove that the OGYmethod
to control unstable periodic orbits (UPOs) of continuous-

time systems, can be applied to a class of systems dis-

continuous with respect the state variable, by using a

generalized derivative. Because the discontinuous prob-

lem may have not classical solutions, the initial value
problem is transformed into a set-valued problem via

Filippov regularization. The existence of the ingredi-

ents necessary to apply OGY method (UPO, Poincaré

map and stable and unstable directions) is proved and
the numerically implementation is explained. Another

possible way analyzed in this paper, is the continuous

approximation of the underlying initial value problem,

via Cellina’s Theorem for differential inclusions. Thus,

the problem is approximated by a continuous initial
value problem, and the OGY method can be applied as

usually.

Keywords Generalized derivative, OGY method,
Poincaré map, Filippov regularization, Cellina’s

Theorem

1 Introduction

In the real word non-smoothness is common. Thus, many

physical laws and systems are modeled by a set of first-

order differential equations with discontinuous compo-

nents. Dynamical systems (DS on short) discontinuous
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with respect to the state variable, appear in a large
number of problems from mechanics (dry friction [1]

with stick and slip modes [2], impacts [3], oscillating

systems with viscous damping [4], elasto-plasticity [5],

vibrations [6], braking processes with locking phases

[7]), electrical (chaotic) circuits [8], networks with switches
[9], power electronics [10]), but also in theory of auto-

matic and optimal control [11], optimization [12,13],

games theory [14], uncertain systems [15], walking ma-

chines [16], biological and physiological systems [17] and
everywhere non-smooth characteristics are used to rep-

resent switches (see also the references in [18,12,19–

21]).

In practical examples the discontinuity may appears
because of switch like functions which (e.g. signum,

Heaviside function-also known as the ”unit step func-

tion”, maximum etc.).

Continuous our discontinuous, most nonlinear sys-
tems behave chaotic under certain circumstances. There-

fore, the desire to control the chaotic evolutions are le-

gitimate and the chaos control (called sometimes chaos

stabilization or chaos suppression) is an important topic

of chaos theory and a key challenge in many areas of
applied an theoretical science.

The chaos control methods can be classified as fol-

lows

– Methods with slightly perturbations of a system

parameter, the most known method being OGY,
named for Ott, Gebogi and Yorke in the seminal

work [22], which forces some trajectory to reach a

particular unstable periodic orbit (UPO) via the

linearization of a Poincaré map;
– Methods with small perturbations in the system

variables in the form of instantaneous pulses (see

e.g. the method proposed by Güemez and Mat́ıas
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in [23], [24] for discrete and continuous DS, or [25]

discontinuous DS).

While the first algorithms are useful in the cases
when some system parameters are accessible, the sec-

ond class of methods are useful in the cases when the

parameters are unaccessible, namely in the cases of cer-

tain chemical, biological electrical circuits etc.

In this paper we prove that the OGY method can

be applied not only for continuous systems, but also for

a class of discontinuous DS modeled by the following

Initial Value Problem (IVP)

ẋ = f(x) := g(x) + As(x), x(0) = x0, t ∈ I = [0,∞),

(1)

withf, g : Rn → R
n, g of class C1(Rn), A = (ai,j)n≍n a

real constant matrix and the vector function s : Rn →
R

n given by

s(x) =







sgn(x1)
...

sgn(xn)






.

Examples of systems modeled by the IVP (1) can

be found in most of the above mentioned applications.

Remark 1 The considered systems, modeled by the IVP
(1) are time-continuous and discontinuous with respect

to the state variables.

The paper is structured as structured as follows:

Section 2 contains the basic necessary notions and re-
sults related to the existence and numerical calcula-

tion of solutions of the IVP (1) and Section 3 presents

shortly the continuous variant of the OGY method and

proves the implementation of the OGY method to dis-
continuous systems of class (1).

2 Preliminary notions and results

Notation 1 The null set of the discontinuity of f (points

where the sign functions vanish) will be denoted by M

and the continuity domain by C .

Due to the sgn functions, the continuity domain

consists in a finite number of open regions Ci (denoted
sometimes by C± in order to simplify the exposure)

which verify C =
⋃

Ci = R
n\M . Thus, the state space

R
n is split into Ci by one hyperplane or by the inter-

section of several hyperplanes called switching surfaces
defined by the indicator function H : Rn → R

n. Due to

the sgn functions, the switching hyperplanes Σk, have

the equations H(x) = 0, i.e. xk = 0, k ∈ {1, 2, ..., n},

where xk is the k-th component of the state vector

x = (x1, x2, ..., xn) ∈ R
n. In the continuity domains

C±, sgn(H(x)) = ±1.

Example 1 Let consider

f (x) = x+ sgn(x) .

Here g(x) = x, M = {0}, and the indicator function
H(x) := x = 0 divides R into the subspaces C − =

(−∞, 0) and C+ = (0,∞). In C −, H(x) < 0 and in

C+, H(x) > 0.

Notation 2 As known, the terms trajectory, orbit, and
flow can be considered to be similar, but they outline

different aspects of the same phenomenon. In this pa-

per we shall call trajectory and orbit the path defining

the dynamics of continuous time systems (continuous

or discontinuous with respect to the state variable) and
discrete systems respectively.

The vector field of an ODE defines a flow which
transforms an initial condition x0 into some state x(t)

and time t ∈ I. Except the case of the consecrated term

Poincaré map, we shall use the term function.

The notions presented next (which can be found

in the comprehensive works [26,27]) will be considered
here, in the most encountered space in applications, the

Euclidean space R
n.

Let F : Rn
⇒ R

n a set-valued function (a relation

which to each input associates at least one output ele-

ment).

Definition 3 A set-valued map F is characterized by

its Graph(F ), the subset of the product space Rn ×R
n

defined by

Graph(F ) := (x, y) ∈ R
n × R

n|y ∈ F (x).

We shall say that F (x) is the image or the value of F
at x.

Remark 2 A set-valued map satisfies a property P of a

subset (for instance, closed, convex, etc.) if and only if

his graph satisfies it.

Definition 4 We say that F is upper-semicontinuous

(USC) at x0 ∈ R
n if for any open N containing F (x0),

there exists a neighborhood M of x0 such that F (M) ⊂

N .

Definition 5 A selection of a given set-valued function

F is a single-valued function h : Rn → R
n satisfying

h(x) ∈ F (x), for all x ∈ R
n.
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In practical examples of discontinuous systems, when

selections are used, it is sufficient to determine the selec-

tions only in some neighborhoods of M points (Figure

1).

In order to deal with OGY’s method, the derivative

is an essential notion. Let consider the discontinuous
function f defined in (1). Because the classical notion

of derivatives at the discontinuity points of f cannot be

used here, a new concept of derivative for our class of

functions (which uses the classical derivative notion at

the continuity points) was introduced in [28].

Definition 6 Let f be differentiable on some open do-
main C ⊂ R

n. We say that f is generalized differen-

tiable at x∗ ∈ R
n if the following limit exists and is

finite

Dxf(x
∗) := lim

x→x∗
Dxf(x), x ∈ C , (2)

where Dx is the classical Jacobian matrix. Dx will be

called the generalized (Jacobi) derivative.

We say that f is generalized differentiable on R
n if

it is so at every x∗ ∈ R
n.

Notation 7 The class of functions f having general-

ized derivative on R
n will be denoted by C 1(Rn).

The following useful result can be easily checked

[28].

Proposition 1 Let consider the IVP (1) with g ∈ C1(Rn).

Then, f ∈ C 1(Rn) and

Dxf(x) = Dxg(x) , x ∈ R
n . (3)

For Example (1), g(x) = x is a C1(R) function,

M = {0}, C1 = (−∞, o), C2 = (0,∞) and, at x = 0, we

have Dxf(0) = lim
x→0

f ′(x) = 1 and therefore Df(x) = 1

for all x ∈ R.

2.1 Solutions to IVP (1)

In the points of M , the IVP (1) may have not sense

and may have not any solutions in the classical sense.
For example the IVP

.
x = 2− 3sgn(x), x(0) = x0 (4)

with discontinuous right-hand side (see Figure 2 a) has
for x0 6= 0, the classical solutions

x(t) =

{

5t+ x0, for x0 < 0,

−t+ x0, for x0 > 0,
(5)

while for x0 = 0 there are no classical solutions since

x(t) = 0 does not verify the equation. In other words,

for x0 6= 0, the solutions tend to the line x = 0 but they

cannot continue along this line (Figure 2 c).

A common device to obtain a precise mathemati-

cal setup of this problem is to replace the single-valued

underlying IVP with a set-valued one. The obtained

IVP can be handled via differential inclusions (DI) the-

ory (see e.g. [26] or [29]). Thus, using some regulariza-
tion procedure (e.g. the so called Filippov regulariza-

tion [29]), the discontinuous IVP is transformed into a

set-valued Cauchy problem

.
x ∈ F (x), x(0) = x0, for a. a. t ∈ I , (6)

where, instead of a differential equation, we have a DI.

The Filippov regularization [29] defines F (x) as fol-

lows

F (x) = co lim
x′→x

f (x′), (7)

where co is the convex hull and limx′→x f (x′) is the

set of all limits of all convergent sequences {f (xk)}

with {xk} → x.

For x ∈ M , F (x) is a set, while for x ∈ C ,

F (x) consists in a single point, f (x). For instance,

the set-valued form of sgn function, which will be
used to transform the IVP (1) into a convex set-valued

problem, is

Sgn(x) =







{−1}, x < 0,

[−1, 1] , x = 0,
{+1}, x > 0.

(8)

Thus, sgn(0) is replaced with the whole interval

[−1, 1], connecting thus the points −1 and +1.

For example, after Filippov regularization, (4) be-

comes

.
x ∈ 2− 3Sgn(x) (9)

which, for x = 0, has the right-hand side the set [−1, 5]

(see Figure 2 b). One can consider that the right-hand

side is actually set-valued only in x = 0, while for x 6= 0

the right-hand side being a single-valued function.

Applying the Filippov regularization to the IVP (1)

one obtains

ẋ ∈ F (x) := f (x)+AS(x), x(0) = x0, for a.a. t ∈ I,

(10)

where S(x) = (Sgn(x1), . . . , Sgn(xn))
T

It is easy to see that Sgn function (8) is USC and

therefore the right-hand side of (10) is USC too [30].

A set-valued IVP may have (several) generalized

(Filippov) solutions which leads to the notion of so-

lutions to IVP (1).
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Definition 8 A generalized (Filippov) solution to (1)

is an absolutely continuous function x (·) : [0,∞) −→

R, satisfying (10) for a. a. t ∈ [0,∞).

Remark 3

i) The existence (Péano) theorem, presented in many
works (e.g. [26,27,29,31]), ensures the existence of so-

lutions for a DI if his right-hand side is a Péano func-

tion, i.e. USC with nonempty closed and convex values.

As proved in the mentioned texts, F obtained with the
Filippov regularization (7) enjoys these properties.

ii) In [30] beside the necessary conditions for uniqueness,

it is proved that the right-hand side of the IVP (1) is a
Péano function and the IVP (1) admits solutions.

For example, after the regularization, the obtained

set-valued IVP (9) has a generalized solution which is,

for x0 < 0 (Figure 2 d)

x(t) =

{

5t+ x0, for t < −x0/5,

0, for t ≥ −x0/5,

and, for x0 > 0

x(t) =

{

−t+ x0, for t < x0,
0, for t ≥ x0,

Notation 9 If x(t) is a solution of the IVP (1), let

the flow ϕt(·, p) : R × R
n → R

n, t ∈ I = [0,∞) which

satisfies ϕt(x0, p) = x(t), d
dtϕ

t(x0, p) ∈ F (ϕt(x0, p)) =

x(t) a.a. in I, and ϕ0(x0, p) = x0, with F defined in

(10). ϕ0 = In, meaning that the flow at t = 0 starts at
the initial condition x0.

Remark 4 Even the flow ϕt of the IVP (1) is composed

by several concatenated flows ϕt
i defined in each subre-

gion of C , ϕt is continuous, and may contains corners
on the discontinuity surfaces. Thus, supposing that Σ

determines two continuity domains C±, the trajectory

may enter Σ with the tangential direction f− imposed

by the vector field defined in C− at the entering point

M , and exits along a different tangential direction f+

defined by the field in C + in the exit point N (Figure

3).

2.2 Numerical integration of IVP (6)

Let us first consider a general autonomous set-valued

problem ẋ ∈ F (x) on I = [t0, T ], with F a Péano set-
valued function (Remark 3 i) with F defined by (7).

A numerical method for DI consists in replacing the

DI on I, with a sequence of discrete inclusions on a
sequence of girds

t0 < t1 < ... < tN = T,

where N ∈ N
′ ⊂ N and the step-size h = (T − t0)/N =

tj − tj−1, for j = 1, ..., N .

For the sake of simplicity, next we consider the sim-

plest numerical method to integrate DIs, the explicit

Euler method (other explicit or implicit methods for DI

can be found e.g. in [31] or [32]). Let consider (6) with
y0 = x0. Then, the sequence {yn} which approximates

the solution in the points tn is

yj+1 ∈ yj + hF (yj), j = 0, 1, ..., N − 1. (11)

As a solution of the discrete DI (11) it is convenient

to consider any continuous piece-wise linear function
yN : I → R

n [31]

yN (t) = yj +
1

h
(t− tj)(yj+1 − yj),

tj ≤ t ≤ tj+1, j = 0, 1, ..., N.

In general, a set-valued function admits infinitely

many values, or selections. Therefore, the key of solving

(11) is the choice of selections which means choice of se-
lecting points from the set-valued F . Thus, the selection

can be chosen by some minimization criterion, or just

by some random choice of selection in the grid points

(see [31,32]). For example in the set-valued function

[−1, 5] which appears in the example (9), for derivative
one can choose randomly a value inside this interval.

There is a rich literature dealing with the Euler

convergence theorem for DI (see e.g. [29, Theorem 1,

pp.77]; [26, Lemma 1 pp. 99], or [31,32]). In these works

it is showed that (11) with F a Péano function has a
convergent subsequence in [t0, T ] to some trajectory of

(6).

For our problem (1), the solutions can be calculated

classically in C (as ODE), and with a numerical scheme

for DI in M . Thus, numerically, when a trajectory ar-

riving from one of the continuity domains (e.g. C− in
Figure 3), meets a discontinuity surface, it needs a fi-

nite, relatively small time interval to traverse it (from

points M to N). The two underlying time moments,

t1 and t2, when the trajectory enters and exits the
surface respectively, can be found with some so called

stopping procedures, e.g. when the indicator function H

changes his sign. In order to obtain a more accurate

intersection with the discontinuity surface (implicitly

reduce the time interval [t
′

1, t
′

2] ⊂ [t1, t2]), one can use
some numerical method to find the zero of the function

H(x) = 0, after the moment when it changes the sign.

In the time interval [t1, t2] (or [t
′

1, t
′

2]), which has the

length less than the integration step size (which can
be the same in C and M if one use a fixed step-size

method), the IVP is integrated as a DI, as mentioned

before.
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Computer tests show that using highly consistent

methods to avoid the typical corners in M points (Fig-

ures 3, and 4), it is not worthwhile, except in continuous

domain C (see e.g. [31]).

Other ways to solve this kind of set-valued IVPs,

used especially in engineering applications, can be found

in e.g. [1].

3 OGY for IVP (1)

3.1 OGY for continuous systems

First, we need to recall briefly, the OGY method for

continuous chaotic systems. Being described in many

works (see e.g. the references in [53]) only the main

steps will be pointed out.

The original variant of the OGY method is effec-

tive only for lower-dimensional chaotic systems1, be-

cause for higher dimensions, when the Jacobian at some
fixed point may have complex or multiple eigenvalues,

the construction of stable and unstable manifolds is a

technical challenge. Therefore let us consider the three-

dimensional case of continuous chaotic systems modeled
by

ẋ = f(x, p) (12)

where f : R3 → R
3 is a smooth function and p ∈ R.

Suppose the system (12) admits, for the nominal

parameter value p0, an UPO of period N , denoted Γ ,

with points yn, n = 0, 1, 2, ..., N , yN = y0. Γ can be

determined numerically with the so called PIM-triple
method [39].

Let an suitable bidimensional Poincaré section, Σ
(usually n− 1-dimensional hyperplane for autonomous

systems and n-dimensional for periodically driven sys-

tems), chosen transversally to Γ (i.e. not tangent to

Γ ) such that Γ intersect Σ in the same sense as previ-

ous intersection (intersections in either senses, related
sometimes as first-return map, are not considered here).

Due to the periodicity, Γ will intersectΣ inN points.
In order to simplify the exposure, without loss of gen-

erality, next one consider only one of the points where

Γ pierces Σ, namely yΓ , which is a saddle. Since yΓ is

arbitrarily, one can consider that each point on Γ can

be considered a saddle and the stability properties of Γ
are independent of the cross section Σ.

OGY method implies one want to approximate Γ by
a stable trajectory denoted hereafter by Θ with points

{xn}, n = 0, 1, 2, ....

1 Meanwhile, several modified variants for higher-order sys-
tems were developed.

Starting from a randomly chosen initial condition

x0, due to mixing property of the attractor (initial con-

ditions get spread over the attractor), Θ will eventually

come sufficiently close to Γ , i.e. some point xn arrives

close to yΓ . This is the moment when, actually, the
OGY method effectively begin.

As known, the Poincaré map reduces the study of

the stability of a periodic orbit of the starting continu-

ous system, to the study of the stability of a fixed point

of a discrete system in the entire Σ or in some neigh-
borhood of yΓ . Therefore, in order to describe the OGY

method, we can focus exclusively on Σ points where a

smooth recursive Poincaré map P : Σ → Σ can be

defined

xn+1 = P (xn, p), n = 0, 1, .... (13)

Therefore, under P , the unstable periodic fixed point

yΓ verifies yΓ = P (yΓ , p0). When Θ pierces Σ in some

point xn sufficiently close to yΓ (i.e. belongs to some
neighborhood U of xΓ ), the control parameter p is ad-

justed with small carefully chosen perturbations, in such

a way that xn remains, in the next step, close to yΓ .

For this purpose, we require to control the unstable di-

rection of xn in U i.e. force xn to fall on the stable
direction. The stability of yΓ is described by the eigen-

values of the Jacobian of P evaluated at yΓ .

If one denote the perturbation by ∆p = |p − p0|,

p will be perturbed every time when xn enters U with

the following quantity, obtained via linearization of the
Poincaré map

∆p =
A(xn − yΓ )ωu

−Bwu
(14)

where A = DxF (x, p)|x=yΓ ,p=p0
is the 2 × 2 Jacobian

of F evaluated at yΓ for p = p0. The column vector

B = DpF (x, p)|x=yΓ ,p=p0
measures the sensitivity of

the system to parameter perturbations, and wu is the

unstable contravariant vector.

If |∆p| > δ, where δ is the required maximum pa-

rameter perturbation, we set ∆p = 0, i.e. p is set to p0
meaning that Θ still has not entered yet in U .

Finally, the orbit {xn} will become an stable orbit
close to UPO, and one can consider that the reference

unstable orbit UPO was stabilized.

Obviously, without control, Θ will diverge from the

reference UPO.

The success key of OGY method is the ergodicity

property.

Summarizing, in order to apply OGY method, the
following elements have to be determined: a) UPO; b)

Poincaré section (map); c) the stable and unstable di-

rections and the underlying contravariant vectors in yΓ .
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3.2 OGY for discontinuous systems

In this section we prove that, under some assumptions,
the OGY method can be applied to the IVP (1). For

this purpose, we will check each steps required by OGY

method.

For the considered UPO, Γ , assume the underlying

flow ϕt(·, p0), t ∈ I = [0,∞) and x = (x1, x2, x3) ∈ R
3,

has the period time T i.e. ϕt+T (x, p0) = ϕt(x, p0), for
all t ∈ I and x ∈ Γ 2.

Let next consider the following assumptions

(H1) x0 /∈ M and the solution starting from some x0,

crosses transversal the switching surfaces and not stay

on it (no sliding mode);

(H2) The Poincaré section, (usually n− 1-dimensional
hyperplane for autonomous systems and n-dimensional

for periodically driven systems), here a bi-dimensional

plane, is chosen such that his intersection point with the

UPO, yΓ , does not belong to the switching plane(s), i.e.

yΓ /∈ M .

Remark 5 i) The dynamics on the switching surfaces

are treated e.g. in [29,35,36,34] or [37]

ii) Even Assmuption (H2) looks restrictive, as in
the most practical examples modeled mathematically

by IVP (1), there exists a single switching plane xi = 0,

for i ∈ {1, 2, 3} (i.e. only a single element ai,j of A in

IVP (1) is not zero). Therefore, as usual for continuous

systems, the Poincaré section could be the plane xi = a
(see Figure 4) for some i ∈ {1, 2, 3} and with a 6= 0.

Anyway, the case of two or three switching surfaces can

be also easily handled (see [38]).

– UPO

Existence

Existence of Γ in systems modeled by (1) is obvious

since the underlying chaotic attractors have the key
property to have a dense set of unstable periodic

orbits.

Numerical determination
Γ can be determined numerically with the so called

PIM (Proper Interior Maximum)-triple method pro-

posed by Nusse and Yorke [39] (see also e.g. [47–

49]) in the same way as for continuous systems. The

method detects and computes chaotic saddles if the
unstable dimension is one. Actually it sets out to

find a long trajectory near the chaotic saddle and it

is based on the fact that trajectories starting close

2 For autonomous systems, like those modeled by (1), T is
considered to be the smallest time τ , for which a trajectory
starting at a point x on the Poincaré surface, pierces again
the surface in a small neighborhood of x [33].

to the stable manifold of the saddle, remains for a

long time in its vicinity.

Briefly, let consider the planar diffeomorphism P :

R
2 → R

2. One begins by taking an interval L1 =

AB in a restraining region, such that it intersects
the stable manifold of the saddle. On this inter-

val, one chose next (say 30 [39]) initial points uni-

formly distributed and one measure their time to

leave the region (life or escape time). Among these
points one can find an interior point M1

1 (i.e. M1
1 is

between A and B) which has the longest life time.

If one consider his two neighborhoods, A1 and B1,

one have a new segment A1B1 and the three points

(A1,M1
1 , B

1), with M1
1 the proper interior maxi-

mum. This triplet is the PIM-triple. It is expected

that A1 and B1 lie on two different sides of a branch

of the stable manifold. Next step one applies the

method on the line segment A1B1 and one obtains
the PIM-triple (A2,M2

1 , B
2) with M1

2 the proper

maximum, and so on until this refining procedure

produces a shorter segment L1 of length less than

a prescribed precision (e.g. 10−9 as described in the

mentioned references). Then one consider that one
obtained the refinement of the first PIM-tripple seg-

ment L1 (whose length become now less than 10−9)

with the proper maximum M1. Next, one iterate

under P the ends of L1 and, by applying the above
refinement procedure, one obtains the refined seg-

ment L2 with M2 the interior of PIM-triple, and so

on until one obtains a sequence of PIM-triple inter-

vals {Ln} each of length less than 10−9.

The coordinates of midpoints {Mn} of the {Ln},
verify xn+1 = P (xn)+ε, with ε of order of 10−9, and

are the required points of the an unstable trajectory

on the chaotic saddle.

In the considered region, these points approach the
stable manifold and, in the same time, move away

from the unstable manifold.

As we shall see next, due to the fact that the chosen

Poincaré map for our systems (1) is a local diffeo-

morphim in some small region, UPO can be deter-
mined by the above algorithm.

– Poincaré map

Existence

Despite the facts that: the existence of a Poincaré

map is far from obvious; there are many cases when
it simply does not exist; the Poincaré maps are in

general discontinuous even for the case of continuous

DS, and there may be regions of the flow where P is

undefined, i.e. points in such a region never return
to Σ. However, under assumptions (H1)-(H2) one

can find a suitable transversally Poioncaré section,
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such that Γ intersects Σ in yΓ , in the same sense

as previous intersection. The transversal condition

in yΓ is 〈nyΓ
, f(yΓ )〉 6= 0, where nyΓ

is the normal

at yΓ , 〈·〉 being the inner product.

Remark 6 It is to mention that the simplest failure
of the transversality condition may change dramat-

ically the geometric properties of the trajectories.

By the implicit function theorem (which applies un-

der assumption (H1)-(H2) and taking account on

Proposition 1), there exists an open neighborhood
U ⊂ Σ of yΓ such that the trajectories starting at

U , return to Σ in a time which is close to T . In U

one can find a unique Poincaré map of subsequent

crossings of Σ, P : U × R → Σ, P (x, p) = ϕT (x, p),
x ∈ Σ (see e.g. [33])3 which is at least a local difeo-

morphism, the differentiability being ensured by the

transversality ([33,41]). P is recursive

xn+1 = P (xn, p). (15)

and the fixed point yΓ verifies P (yΓ , p0) = ϕT (yΓ , p0)

= yΓ , i.e. the trajectory starting from yΓ will hit

againΣ in approximately T seconds. In other words,

one can say that the fixed point of P , yΓ , is an initial

condition for Γ .

Numerical calculation

In the practical problems, the Poncaré maps can be

found only numerically. For this purpose we have to

solve the system of differential equations, and also
detect the fixed points.

Let consider the common choice (see Remark 5)

Σ = {x ∈ R
3|xk = a}, k ∈ {1, 2, 3}. Let Θ, with

some initial condition x0, the trajectory which has
to be a stable one close to Γ . For this purpose we

have to integrate (1) following the way indicated in

Subsection 2.2 until the trajectory arrives, for some

n, closely to Σ, i.e. two consecutive points of the

trajectory lie on different side of Σ. Next, the inter-
section point will be found as the zero of the func-

tion xk
n − a, where xk

n is one of the components of

the Θ sequence {(x1
n, x

2
n, x

3
n)}, obtained by using,

for example, the Newton method. As mentioned be-
fore, special attention must be payed to choose only

the returns on Σ which have the same sense like the

previous one (i.e. the trajectory enters Σ from the

space e.g. xk − a < 0 to xk − a > 0) (Figure 5). At

the end of the algorithm, one obtains a point of the
Poincaré map. Then, the algorithm repeats to find

the next point map and so on.

3 The Poincaré map is defined on the entire section Σ only
if the underlying system is non-autonomous and presents pe-
riodically forced vector field (see [40]).

The stopping procedure used to find the section was

presented first by Hénon in [42] and improved and

generalized in e.g. [43] and [44] (see also [33]).

– Stable and unstable directions eu and es

Existence

Since we saw the Poincaré map (15) is a locally dif-
feomorphism, the Stable Manifold Theorem guaran-

tees the existence of stable and unstable local direc-

tions eu and es [45] which are constructed via the

eigenvalues of the Jacobian of the Poincaré map,

called also monodromy matrix M(t), evaluated at
yΓ . In our considered case R3, the stable and unsta-

ble directions are one-dimensional, fact which allows

the use of the PIM-triple algorithm to find UPO.

As known, the monodromy matrix, M(T ), is the
fundamental matrix solution Φ(t) of the IVP (1),

after the period T ,M(T ) = Φ(T ), relating the states

of the system at time t and t+T . The fundamental

matrix solution Φ is solution of the the variational

problem for the linearized equation about Γ

Φ̇ = Dxf(xΓ )Φ, Φ(0) = In. (16)

where Dx has been replaced with the generalized

derivative Dx. Under considered assumptions, the

monodromy matrix can be calculated such as for

continuous systems. Thus, let us consider a discon-

tinuous system with a single switching surface Σ =
{x ∈ R

3|xi = 0}, which splits R
3 in the continuity

domains C±, and having the form

ẋ =

{

f1(x), for x ∈ C −,

f2(x), for x ∈ C+,

with x(0) = x0 ∈ C −. Then, if one consider the

flow cross Σ, in x ∈ C− we have the fundamental
matrix solution Φ1 and, after the trajectory pierces

Σ, for x ∈ C+, the fundamental matrix solution

Φ2. Since Dxf1(x) = Dxf2(x), following (16), one

obtains Φ1=Φ2 for t ∈ I and, therefore, equation
(16) is valid for our class of problems.

Φ(T ) exhibits the eigenvalues (characteristic Flo-

quet multipliers) 1, λ1, λ2, ..., λn−1
4.

Remark 7 As mentioned before, for higher-dimensional
Poincaré maps (n > 2) there may be several stable

and unstable directions which make the algorithm

cumbersome.

4 The reason of appearance of the Floquet multiplier 1 in
the eigenvalues spectrum relies on geometric reasons. The re-
minder multipliers are identical to the eigenvalues of the lin-
earization of the Poincaré map. ([46] Theorem 1.6, p. 30).
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Numerical calculation

At the saddle yΓ , the planar linear map Φ(T ) has

only two eigenvalues: a stable eigenvalue λs and an

unstable eigenvalue λs which satisfy |λs| < 1 and

|λu| > 1.
To calculate these stable and unstable directions, es
and eu, one can use the algorithm presented in [47]

(also we refer to [34,50,51,33]).

Around yΓ , one can consider a circle. The system
dynamics will transform this circle into an ellipse.

The unstable direction is the larger radius of the

ellipse, while the smaller is the stable direction.

Since the the two eigenvalues exist and cannot be

zero, the monodromy matrix M is invertible and
therefore there exists P−1.

First, yΓ is iterated forward N times under P ob-

taining the trajectory: P (xΓ ), P
2(xΓ ), ..., P

N (xΓ ).

Next, we place a circle of arbitrarily radius at PN (xΓ ).
Iterating backward the circle under P−1, it deforms

becoming in Pn−1(xΓ ) into an ellipse. Continuing

this process, the ellipse becomes very thin in yΓ , his

major axis being the stable direction.

To find the unstable direction on yΓ , one iterate N
times yΓ backward with P−1, i.e. P−1(xΓ ), P

−2(xΓ ),

..., P−(n−1)(xΓ ), P
−N (xΓ ). There, one place the cir-

cle and one iterate it forward N times. Finally, the

largest axis is the unstable direction.
In practice, for the sake of simplicity, instead a circle

we can take a unit vector and iterate it forward and

backward.

In the Euclidean plane, the stable and unstable di-

rections, es and eu, and the contravariant basis, sat-
isfy in each point the conditions wueu = wseu = 1

and wues = wseu = 0, wherefrom one can calculate

wu necessary in relation (14).

Thus, the existence of all the ingredients necessary
for OGY method have been proved. Summarizing, one

can enounce the following property

Proposition 2 Let the discontinuous system (1) with

g of C1(R) class and having an UPO Γ . Then the cor-

rection (14) is well defined and Γ can be approximated
by a stable periodic orbit with the OGY method.

3.3 OGY for continuous approximated system

Another approach of stabilizing the UPO is to approxi-

mate continuously the set-valued of the right-hand side

of (1) in some neighborhood.

As we saw in Subsection 2, to solve the discontin-

uous IVP (1), the single-valued problem can be trans-

formed into the set-valued IVP (10). Because the right-

hand side is a convex multifunction, the following ap-

proximation theorem (Cellina’s Theorem) can be ap-

plied

Theorem 1 (Approximate Selection Theorem [26,
Theorem 1, pp.84]) Let F a convex USC set-valued

function. Then for every ε > 0 there exists a locally

Lipschitz function hε : X → Y such that

Graph(hε) ⊂ B(Graph(F ), ε),

and for every x ∈ X, fε(x) belongs to the convex hull

of the image of F .

In practice, one of the most utilized selections is the

real valued sigmoid function. For sgn functions utilized

in our IVP (1) the sigmoid function is hε : U → R

hε(x) =
2α

1 + e−x/ε
− β,

where U is a neighborhood of a discontinuity point and

α and β are to be found from continuity imposed at the

neighborhood frontier of U (Figure 1).
It is easy to see that the set-valued map of the

right-hand side of (10) is convex and USC. Therefore

Theorem 1 applies and we can find a Lipschitz selec-

tion, which approximates continuously the discontinu-

ous IVP (1) in ε-neighborhoods of M points.
Another continuous and even smooth approxima-

tion can be realized via three-order polynomials (poly-

nomials are Lipschitz on finite intervals) pε : R 7→ R,

pε(x) = a1x
3 + a2x

2 + a3x + a4, where ai ∈ R are to
be found from continuity and smoothness conditions

imposed at ±ε [52].

For instance, let us consider the simplest two-dimensional

model Coulomb friction 5

ẋ1 = x2, (17)

ẋ2 = −x1 − sgn(x2),

with g(x) = (x2,−x1)
T ,A =

(

0 0

0 −1

)

, s(x) = (sgn(x1),

sgn(x2)
T , M = {(x1, 0) ∈ R

2|x1 ∈ R}, C = {(x1, x2) ∈

R
2| x2 6= 0} (see Figure 6 a where the graph of the

second component of f is plotted). After Filippov regu-

larization, in x2 = 0 one obtains the set-valued function

F (x1, 0) whose graph is plotted in Figure 6 b. Because
the problem belongs to the class (1), it verifies the con-

ditions in Theorem 1 and therefore a continuous selec-

tion can be found. If one approximate sgn(x2) with pε
in a neighborhood of x2 = 0, one obtains a smooth
surface (Figure 6 c).

5 Higher dimensional cases, such as R3, are less common for
discontinuous systems. However they can be treated similarly.
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Thus, the discontinuous problem is transformed into

the following continuous problem

.
x1 = x2

.
x2 =

{

hε(x1, x2), x2 ∈ (−ε, ε) ,

−x1 − sgn(x2), x2 /∈ (−ε, ε) ,
x1 ∈ R.

where hε(x1, x2) = −x1− pε(x2) and the OGY method

applies as for continuous systems.

Conclusion In this paper we have proved that the

OGY method for continuous systems can be applied
to the class of systems modeled by the IVP (1). The

possibility to used the generalized derivative, Dx, in-

troduced in Section 2, is the main fact which allows

this implementation. The only restriction is to choose
the Poincaré section different to the switching planes.

We saw that all steps of the method can be applied

to (1). For this purpose, the existence of the necessary

ingredients and the possibility of numerical implemen-

tation are proved.
Also, we proved that the IVP (1) can be continu-

ously approximated by using the Cellina’s Theorem. In

this way, OGY method can be applied as for continuous

systems.
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Fig. 1 Graph of an approximate selection hε in a ε-neighborhood of a set-valued function F (sketch).

Fig. 2 Equation (4) (sketch). a) The right-hand side before regularization. b) The right-hand side after regularization. In
x = 0, the discontinuity is replaced by the set-valued function F (x). c) The solutions before regularization cannot be continued
along the axis x = 0. d) After regularization, the problem admits generalized solutions defined on the entire axis x = 0.
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Fig. 3 A trajectory may have some corners when it transverses the switching surface, due to the different directions f− and
f+ in the continuity domains C − and C+ at the points M and N . In C± the IVP is integrated as an ordinary ODE, while in
M as a DI (sketch).

Fig. 4 Poincaré section and two switching surfaces.
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Fig. 5 Poincareé section and map (sketch).

Fig. 6 Graph of the second component of the right-hand side of (17). a) Before regularization. b) After regularization in
x2 = 0, the graph of the set-valued function is a rectangular bounded surface. c) After the continuous approximation, the
rectangular surface is replaced within an ε-neighborhood, with a continuous approximation.




