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Abstract The review presents a parameter switching
algorithm and his applications which allows numerical

approximation of any attractor of a class of continuous-

time dynamical systems depending linearly on a real pa-

rameter. The considered classes of systems are modeled
by a general initial value problem which embeds dynam-

ical systems continuous and discontinuous with respect

to the state variable, of integer and fractional order.

The numerous results, presented in several papers, are

systematized here on four representative known exam-
ples representing the four classes. The analytical proof

of the algorithm convergence for the systems belonging

to the continuous class is presented briefly, while for

the other categories of systems the convergence is nu-
merically verified via computational tools. The utilized

numerical tools necessary to apply the algorithm are

contained in five appendices.
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1 Introduction

In Nature there are many different interactions and the

real systems could evolve according to more that one

dynamics for short periods of time. Therefore, it is rea-
sonable to think that the evolution of some natural pro-

cesses could be imagined as the result of the alterna-

tion of different dynamics for relatively short periods

of time. In particular, a topic of research regarding pa-

rameter switching which has arisen in the last years,
consists in studying the dynamics of continuous-time

systems [1–7] and discrete systems [8–10].

In this paper we review aspects of some previous

results, obtained by us with parameter switching tech-

niques. We considered general classes of systems, con-

tinuous and discontinuous with respect to the state vari-
able, and of integer and fractional order.

The truthfulness of the previous results are sustained
here by another numerical tool, the cross-correlation.

Via numerical simulations we found for a large class
of systems (and analytically proved for a particular

class [11]), that any attractor of some considered system

can be synthesized (numerically approximated) by us-

ing some parameter switching rule. The analytical and
numerical proofs are based on the fact that the invariant

sets obtained with the control parameter periodically

switched are numerical approximations of those corre-

sponding to the control parameter replaced with the

average of the switched values. This useful result was
intensively verified on several examples with a numeri-

cal algorithm called the Parameter Switching algorithm

which represents an elegant and easy way to approxi-

mate numerically any attractor of a dynamical system,
belonging to a general class of systems, starting from

a set of accessible parameter values which are switched

in relative short period of times. The switching rule
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Table 1 Classification of the considered dynamical systems modeled by the IVP (1).

C = 0n×n C 6= 0n×n

q = 1 Continuous of Integer order (CI) systems Discontinuous of Integer order (DI) systems
q ∈ (0, 1) Continuous of Fractional order (CF) systems Discontinuous of Fractional order (DF) systems

can be modeled by some piecewise continuous function.
The algorithm is useful for example in practice, when

a desired parameter value cannot be directly accessed.

Also, it can help to understand what happens in some

real systems when the control parameter is switched by

natural or imposed causes.

The Parameter Switching algorithm differs from the
known control/anticontrol algorithms, where the pa-

rameter is generally slightly modified following some

very precise rules in order to modify the behavior of

some trajectory. Our algorithm allows the choice of any
deterministic or even random switching rule within a

set of parameter values, the result being an attractor

which belongs to the set of all existing attractors of the

underlying system.

The paper is organized on two main parts concern-

ing theoretical aspects and applications respectively,
as follows: Section 2 presents the attractors synthe-

sis, where the Parameter Switching is detailed, Section

3 present the numerically evidence of the Parameter

Switching algorithm convergence, while in Section 4

four representative examples are analyzed. Additional
information are presented in five Appendices.

2 Attractors synthesis

In this section, the utilized notions, results, assump-

tions and the underlying Initial Value Problem (IVP)
modeling a general class of systems, continuous or dis-

continuous with respect to the state variable and of

integer or fractional order, are presented.

2.1 Preliminaries notions and notations

All the considered systems can be modeled by the fol-

lowing IVP

dqx(t)
dtq = f(x(t)) + pBx(t) + Cs(x(t)),

x(0) = x0, t ∈ I,
(1)

where p is a real parameter, q stands for the derivative

order (for q = 1, we have the known standard deriva-
tive, while for q 6= 1 we have the so called fractional

derivative: dq/dtq), f : Rn → Rn is a nonlinear vec-

tor valued function, at least continuous with respect

to the state variable, I = [0, T ] , T > 0 , B, C real
n × n squared matrices, and s : Rn → Rn, s(x) =

(s1(x1), . . . , sn(xN ))t is a piece-wise continuous func-

tion, being composed in most general cases by signum

functions: si(xi) = sgn(xi), i = 1, 2, . . . , n, or e.g. step

(Heaviside) functions.

It is classically assumed that q ∈ (0, 1]. Function of q

and C, we can have the situations presented in Table 1.

Throughout this paper the following assumption will be

considered

(H1) The IVP (1) admits a unique solution (e.g. Lip-

schitz continuous).

The control parameter p is considered to be a (pe-

riodic) piecewise constant function p : I → R (an ex-
ample for a periodic function p is presented in Fig.1).

As we shall next, p can be a function periodic or not.

Other form of functions for p can be found in [11].

Fig. 1 Piecewise constant periodic function p : I → R (sketch).

Due to the piece-wise continuity of p, the IVP (1)
becomes non-autonomous. However, for the sake of sim-

plicity next, the time variable t will be omitted unless

necessary. Therefore, the IVP (1) can be written as fol-

lows

dqx

dtq
= f(x) + pBx+ Cs(x), x(0) = x0, t ∈ I. (2)

Remark 1 The existence and uniqueness conditions for

IVPs modeling DI andDF systems differ from those

for CI systems, and are not presented here (for our
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Table 2 Systems utilized in this paper.

Type Order System q f(x) B C

C
o
n
ti
n
u
o
u
s

In
te
g
er

Lorenz
ẋ1 = 10(x2 − x1)
ẋ2 = −x1x3 − x2 + px1

ẋ3 = x1x2 − 8
3
x3

1





10(x2−x1)
−x1x3−x2

x1x2−
8
3
x3









0 0 0
1 0 0
0 0 0



 O3×3

C
o
n
ti
n
u
o
u
s

F
ra
ct
io
n
a
l Lü

dqx1

dtq
= −x1 + px2

dqx2

dtq
= −x1x3 + 28x2

dqx3

dtq
= x1x2 − 3x3

q < 1





x1

−x1x3+28x2

x1x2−3x3









0 1 0
0 0 0
0 0 0



 O3×3

D
is
co
n
ti
n
u
o
u
s

In
te
g
er

Sprott
ẋ1 = x2

ẋ2 = x3

ẋ3 = −x1 − x2 − px3 + sgn(x1)

1





x2

x3

−x1−x2









0 0 0
0 0 0
0 0 −1









0 0 0
0 0 0
1 0 0





D
is
co
n
ti
n
u
o
u
s

F
ra
ct
io
n
a
l Chua

dqx1

dtq
= −2.57x1 + 9x2 + 3.86sgn(x1)

dqx2

dtq
= x1 − x2 + x3

dqx3

dtq
= −px2

q < 1





−2.57x1+9x2

−x1−x2+x3
0









0 0 0
0 0 0
0 −1 0









3.86 0 0
0 0 0
0 0 0





class of DI systems they can be found in e.g. [12],

while for differential equations of fractional order in

[13] or [14])

The chosen systems to represent in this work the

four classes in Table 1 are three-dimensional, but the

algorithm and the underlying results are applicable for
any finite lower or higher dimension n.

The examples treated here are presented in Table 2:

Lorenz system, Sprott system [15], Lü system [16] and

a fractional variant of the Chua’s system [17]). Other

examples can be found in [1,3,5–7].

A global attractor, roughly speaking, is viewed in

this paper as a state space region of a dynamical sys-

tem that the system can enter but not leave, contain-

ing no smaller such region (see e.g. [18]). The global
attractor contains all the dynamics evolving from all

initial conditions. In other words, it contains all the

solutions, including stationary solutions, periodic solu-

tions, as well as chaotic ones. The term of local attractor

is used sometimes for attractors which are not global
attractors [19].

The global attractors may contain several local attrac-

tors. Therefore, a global attractor can be considered as

being “composed” of the set of all local attractors for a
given parameter p value and initial conditions. Each lo-

cal attractor attracts trajectories from a subset (basin

of attraction) of initial conditions (for details on the

notions of local and global attractors we refer e.g. to

[20–23]).

Remark 2 (i) For the sake of simplicity, when a global

attractor is composed by several local attractors,
only a single local attractor will be considered (the

choice can be made by appropriate selections of the

initial conditions). Therefore, hereafter, by attractor

one understands, simply, either one of the local at-

tractors or the single local attractor which composes
the global attractor;

(i) Due to the predominant numerical characteristics of

the present work, without a significant loss of gen-

erality, the attractors will be considered as approx-
imations, after neglecting a sufficiently long period

of transients [24], of the ω − limit sets (the set of

points that can be limit of subtrajectories). Despite

the fact that usually these sets are uncomputable,

they can be numerically approximated. Therefore,
in this paper the attractors are considered as being

the plots of the ω − limit sets.

Let us use throughout the review the following nota-

tions

Notation 1 - A the set containing the attractors de-

pending on p, including attractive stable fixed points,

limit cycles and chaotic attractors;
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Fig. 2 Time
subintervals
Ii1, i = 1, 2, 3

and 4 (sketch).

- P the set of all p admissible values;

- PN = {p1, p2, . . . , pN} ⊂ P a finite ordered subset of

P;

- AN = {A1, A2, . . . , AN} ⊂ A the set of the attractors
corresponding to PN ;

- I =
⋃

j=1,2,...

(
N
⋃

i=1

Iij), where the adjoint subintervals

Iij are of time length mih, where the ”weights” mi are

some positive integers, h > 0, for i = 1, 2, . . . , N and

all j (see Fig.2 for the particular case of the first set of
time-intervals Ii1 for i = 1, 2, 3, 4 );

- p∗ the average parameter

p∗ =

N
∑

i=1

mipi

N
∑

i=1

mi

; (3)

- A∗ the average attractor, obtained for p = p∗.

Remark 3 Taking account to the Assumption H1 it
follows naturally to define a monotone bijection F :

PN → AN for some fixed N. Therefore, to each

p ∈ PN corresponds a unique element A ∈ AN and

reversely, for each A ∈ AN there exists p ∈ PN such

that A = F (p) (Fig.3).

2.2 Parameter Switching algorithm

To prove that any attractor can be approximated by

switching the parameter while the underlying IVP is
integrated, we need a numerical algorithm to implement

the switches that we name Parameter Switching (PS)

algorithm.

Let fix for some N, the set PN . Then, p∗ given by (3),

can be rewritten in the following form

p∗ =

N
∑

i=1

αipi with αi = mi

/

N
∑

i=1

mi, pi ∈ PN . (4)

Because αi < 1 and
N
∑

i=1

αi = 1 , p∗ enjoys the following

property

P1. For every set PN , p∗ given by (3) is a convex com-

bination of pi, i = 1, 2, . . . , N .

To implement the PS algorithm, we have to inte-

grate the IVP (2) with a numerical scheme for ODEs
with single step-size h (e.g. the standard Runge-Kutta

method).

Fig. 3 Bijection F : PN → AN (sketch).
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Fig. 4 Order induced by F in AN .

Let first consider that p is a periodic function of period

T0, i.e. p(t+T0) = p(t) for all t in I. While the solution

to the IVP (2) is numerically approximated, the pa-

rameter p is switched within PN periodically in every
consecutive time interval Iij , following some designed

scheme, denoted hereafter by Sh

Sh ⊜
[

p1
∣

∣

I1j , p2
∣

∣

I2j , . . . , pN
∣

∣

INj

]

, j = 1, 2, . . . , (5)

which means that while the IVP (2) is integrated, in
each interval Iij , p will be replaced by pi for every

j = 1, 2, . . .. Thus, for t ∈ I11, p(t) = p1, for t ∈ I21,

p(t) = p2 and so on until IN1, when p(t) = pN . On the

next interval I12, again p(t) = p1 and so on until the

interval IN2, when p(t) = pN . The algorithm repeats on
the next set of intervals Ii3, i = 1, 2, . . . , N and so on

periodically, until t ≥ T . In other words, p is a piecewise

constant and periodic function of period T0 = h
N
∑

i=1

mi

having the following expression (See Fig.1, 2)

p(t) = pi, for t ∈ Iij , i = 1, . . . , N, j = 1, 2, . . . (6)

The length of the time intervals Iij will be taken as

multiple of h: length(Iij) = mih for each j. Therefore,

for a fixed h, Sh can be noted in a simplified form

Sh ⊜ [m1p1,m2p2, . . . ,mNpN ] , (7)

which means the following p infinite sequence

m1p1,m2p2, . . . ,mNpN ,m1p1,m2p2, . . . ,mNpN , . . .

For example, Sh = [2p1, p2] for a given h, means that

for the time-interval of length 2h, p = p1 then for the
next time-interval of length h, p = p2 . Next, for two

integration steps, p = p1, then for one integration step,

p = p2 and so on

Table 3 Pseudo-code of the PS algorithm

CHOOSE Sh, T, h

REPEAT
FOR i = 1 to N

FOR k = 1 to mi

one step integration of the IVP (2) for p = pi
t = t+ h

ENDFOR
ENDFOR

UNTIL t ≥ T

(i.e. periodically with period T0 = (m1 +m2)h = 3h).

Schematically, Sh can be written as the infinite sequence
[2p1, p2] = p1, p1, p2, p1, p1, p2, . . .

The pseudocode of the PS algorithm is given in Table

3.

It is easy to verify that

p∗ =
1

T0

t+T0
∫

t

p(τ)dτ, t ∈ I.

Notation 2 Let denote by A◦ the attractor, obtained

with the PS algorithm, called hereafter the synthesized
attractor.

Remark 4 It is easy to see that, for some given p,

the relation (3) considered as equation, may have

several solutions. For example, if we set N = 2,

and want to obtain p∗ = 4 using the scheme Sh =
[m1p1,m2p2], for p1 = 2 and p2 = 6, we can choose

m1 = m2 = 1 but also m1 = m2 = 3 to verify (3).

If we fix m1 = 3 and m2 = 1, in order to obtain

p∗ = 4, we can use p1 = 2 and p2 = 10, but also
p1 = p2 = 4.

3 Numerical proof of PS algorithm convergence

In this section we verify numerically that for a cho-
sen set of attractors AN , the synthesized attractor A◦

obtained with the PS algorithm belongs to AN and,

moreover, A◦ is approximatively identic with A∗.

In order to compare two attractors, we have to provide

the following criterion

Criterion We shall say that two attractors are ap-
proximatively identical (AI) if their trajectories in

the phase space approximatively coincide, and the

Hausdorff distance (Appendix B) is small enough.

In our numerical experiments Hausdorff distance was of

order of 10−4 − 10−3.
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Fig. 5 Attractor synthesis: sketch of the proof of Theorem 2.

Due to the bijectivity of F, considering the total order

over the set PN , it is reasonable to consider that the

following property holds

P2. AN is an ordered set endowed with the PN order

induced by the function F.

Moreover, the same order can be found over the sets PN

and AN considered as intervals: [p1, pN ] and [A1, AN ]

respectively and, without lose generality, we can con-
sider that Ai = F (pi), i = 1, 2, . . . , N (Fig.4). This

property is outlined in the bifurcation diagrams.

Notation 3 Let denote AI by ” ∼= ”.

Next, in order to prepare the proof of the main result

regarding the parameter switching, we introduce the

following lemma

Lemma 1 Given N and PN , A◦ ∼= A∗.

Proof The lemma has been checked numerically with

tools such as: histograms, Poincaré sections, time series,

cross-correlation (Appendix A) and Hausdorff distance
(Appendix B). The numerous examples, show that the

attractor A◦, obtained with PS algorithm, and A∗ ob-

tained for p = p∗, are AI, the degree of the identity

depending less or more on the system characteristics
and, unavoidably, on the numerical errors. Hausdorff

distance, for all considered systems, was of order of

10−4 − 10−3. ⊓⊔

The sketch of the analytical proof of this lemma, pre-

sented in [11] for the case of CI systems, can be found

in Appendix C.

Remark 5 Applying the symbolic computation for the

CI systems, with the scheme Sh for N ≤ 3, the IVP
(2) was integrated with the forward Euler method.

The result shown that the (Euclidean) difference be-

tween the two solutions corresponding to p = p∗ and

to p is of order of O(h2) which is the same as the

truncation error of the considered Euler method.

Yet, the main result which can be numerically proved,
can be introduced.

Theorem 2 Given N and PN , A◦ belongs to (A1, AN ).

Proof By the properties P1 and P2, it follows that

A∗ ∈ (A1, AN ). Next, by the Lemma 1, the attractorA◦

synthesized with some scheme Sh, is AI to A∗. Thus,

A◦ ∼= A∗ and therefore A◦ belongs to (A1, AN ), which
completes the proof (see Fig.5). ⊓⊔

Summarizing, for every finite set PN and numbers mi,
the synthesized attractorA◦ will belong within (A1, AN ),

and differs from every attractorAi ∈ AN , i = 1, 2, . . .N

(due to the convexity property). Reversely, any attrac-

tor of AN can be considered as being synthesized with
the PS algorithm, by means of a finite set of attractors

of AN .

For the continuous case, the analytical proof in [11],

shows that the solutions of the equation (2) with p
switched within PN with PS algorithm and that with

p replaced with p∗ can be arbitrarily close. Therefore,

the underlying invariant sets (attractors in our case)

are also arbitrarily (AI ) close ([19], Ch. 6).

Due to the mentioned convexity property, whatever

kind of combinations of pi and mi values are considered

for a fixed N , p∗ will still belong within the interval

(p1, pN ) (see examples in [11]).

The proof of the convergence (analytically or nu-

merically verified) does not depends on the periodicity

of p but only on the convexity of p∗. Therefore, it is ob-

vious that not only periodic schemes (7) can be used,

but even random ones [1]. One of the simplest way to
implement randomly the PS algorithm, once N is fixed,

is to chose first pi and mi in some random manner, af-

ter which the PS algorithm is started (see the example

of Sprott system, Subsection 4.3). Obviously, there are
several other random ways such as: choosing randomly

mi and pi while the PS is running, or switching the

order of pi and so on. Now, the averaged p∗ has to be
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Fig. 6 Scheme [m1p1,m2p2] with m1 =
90, m2 = 96, and p1 = p2 = 1 applied to
the Lorenz system. p∗ = 93. (a) A◦ and

A∗; (b) Poincaré sections; (c) Histograms;
(d) Cross-correlations; (e) Time series.

determined with the following relation

p∗ =

N
∑

i=1

m,
ipi

N
∑

i=1

m,
i

, (8)

where m
′

i denote the number of times when pi is chosen

by the algorithm for t ∈ I.

Remark 6 (i) The “structural stability” of the PS al-

gorithm presents some obvious limitations due firstly

to his numerical approach (some details and other

related aspects can be found in [1]). For example, for
relative large values ofmi, the trajectory of A

◦ could

present some “corners” (a maximum difference be-

tween mi should generally be about (20÷ 25)h) but

even larger for some examples. The values for pi
could be taken over the entire set PN without distin-
guishable differences between A◦ and A∗. Excessive

number of decimals for p∗ could lead too to some

differences between the two attractors A◦ and A∗.

Even for large values for N, A◦ and A∗ still remain
close each other;

(ii) The cross-correlation and time series show an inter-

esting characteristic: the trajectories corresponding

to A◦ and A∗, even in the phase space and time rep-

resentations are AI, they are dephased in time (see

cross-correlation in the figures);

(iii) For chaotic attractors, the AI is obtained only

“asymptotically” since the necessary time to fully
approximate the attractor is, theoretically, infinite.

The PS algorithm can be used to “control” or “anticon-

trol” dynamical systems modeled by the IVP (2) when

some targeted parameter value cannot be accessed di-
rectly (see [4]). For this purpose, we have to choose pi,

mi and some scheme Sh to obtain the targeted value

p∗. However, while almost all known control/anticontrol

algorithms “force” some trajectory to change its char-

acteristics and behavior, the PS algorithm allows to
obtain any desired already existing attractor of AN .

4 Applications

This section is devoted to the applications of the PS

algorithm to the four classes of dynamical systems (see

Tables 1 and 2) to synthesize attractors. In this purpose
we have to choose N,PN and Sh for each system, such

that a desired value p∗ (which can be taken e.g. from

the bifurcation diagram) is obtained.
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Fig. 7 Bifurcation dia-
gram for the Lorenz sys-
tem.

To apply the PS algorithm for CI systems, we used

the standard Runge-Kutta method (with the step size

h of order between 10−4 and 10−2, depending on the
characteristics of the considered system), while for the

discontinuous and fractional systems, we have chosen

special numerical methods. The bifurcation diagrams,

time series, histograms and cross-correlations were de-
termined and plotted superimposed for the first state

variable x1. The Poincaré sections have been deter-

mined for the plane x3 = const. Some bifurcation dia-

grams, like the one for the Sprott system and especially

for the fractional Lü and Chua systems, require an ex-
tremely long computer time (see Appendix D ). For

discontinuous systems (of integer and fractional order),

some ’corners’ can be remarked, typical for these kind

of systems (the solution for the underlying IVP are gen-
erally not smooth [12,25]). As stated before, the AI was

verified for all the considered systems via superimposed

phase portraits, Poincaré sections, histograms, time se-

ries and also with cross-correlation and Hausdorff dis-

tance. For all the considered cases, the results lead to
the same conclusion: Lemma 2 applies to all considered

classes of systems.

4.1 Continuous dynamical systems of integer order

The PS algorithm was tested on several examples of CI

systems such as: Lorenz, Chen, Rössler, Rabinovitch-

Fabrikant [1], Hindmarsh-Rose neuronal system [5], net-
works [6] and Lotka-Volterra [7]. Here, we consider the

representative case of the Lorenz system.

For this class of systems, the IVP (2) has to be con-

sidered for the particular case q = 1 and C = On×n,

namely (Table 2)

ẋ = f(x) + pBx, x(0) = x0, t ∈ I. (9)

The utilized numerical method is the standard Runge-

Kutta with integration step-size h = 0.01.

• Let first consider the scheme (7) for N = 2: [m1p1,

m2p2] with p1 = 90, p2 = 96, and m1 = m2 = 1.

Then p∗, given by the relation (3), is p∗ = (m1×p1+
m2 × p2)/(m1 + m2) = 93. Applying the PS algo-

rithm, the synthesized attractor A◦ (red plot, Fig.6

a) is a stable limit cycle that is AI with the average

attractor A∗ (superimposed blue plot over A◦) for
p∗ = 93. The AI is emphasized in addition to the

over-plot in the phase space, by the superimposed

Poincaré sections with the plane x3 = 130 (Fig.6 b)
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Fig. 8 Scheme [2p1, 3p2, 2p3, 4p4, 3p5] for
p1 = 125, p2 = 130, p3 = 140, p4 = 144
and p5 = 220 applied to the Lorenz sys-
tem. p∗ = 154. (a)-(e) The attractors Ai

corresponding to pi, i = 1, . . . , 5; (f) A◦ and
A∗; (g) Histograms; (h) Poincaré sections;
(i) Cross-correlations; (j) Time Series.

and superimposed histograms for the first state vari-

able x1 too (Fig.6 c). The cross-correlation (Fig.6

d) shows that the time series corresponding to A◦

and A∗ are AI, but dephased. This time-difference

between the corresponding trajectories is better re-

marked from the time series corresponding to the

first component x1 (see Fig.6 e).

• Let next consider the case N = 5 with the scheme
[2p1, 3p2, 2p3, 4p4, 3p5] for p1 = 125, p2 = 130, p3 =

140, p4 = 144 and p5 = 220. In order to facilitate

the use of the PS algorithm, the bifurcation dia-

gram will be used (Fig.7). Now, p∗ = 154, and the
synthesized attractor A◦ is again a stable limit cycle

which is AI with A∗ (Fig.8 f) even A1−4 are chaotic

and only A5 is a stable limit cycle (Fig.8 a-e). Both

attractors A◦ and A∗ are AI (see Fig.8 g-h where-

from the AI property can be remarked). The time

series being dephased (Fig.8 i,j), the trajectories of

the attractorsA◦ and A∗ are AI, but time dephased.

• If for the same scheme [2p1, 3p2, 2p3, 4p4, 3p5] we
choose p5 = 166 instead p5 = 220, the synthesized

attractor A◦ is chaotic and AI with A∗ for p∗ =

142.428 (Fig.9). However, now the AI is only an

almost identity (see Remark 6 (iii)). The Poincaré

section (Fig.9 c) was obtained with the plane x3 =
145. The cross-correlation shows that the underlying

trajectories of A◦ and A∗ are dephased. Because the

trajectories are chaotic, the time series to underline

this time-difference is irrelevant in this case.

For all analyzed examples, the Hausdorff distance was

of order 10−3.

Other examples of CI systems can be found in [11].



10

Fig. 9 Same scheme as in Fig.8: [2p1, 3p2, 2p3, 4p4, 3p5] but with
p5 = 166 instead p5 = 220. p∗ = 142.428. (a) A◦ and A∗; (b)
Histograms; (c) Poincaré sections; (d) Cross-correlations.

4.2 Continuous dynamical systems of fractional order

Fractional mathematical concepts allow to describe cer-

tain real objects more accurately than the classical “in-

teger” methods. Examples of such real objects that
can be elegantly described with the help of fractional

derivatives displaying fractional-order dynamics, may

be found in many fields of science and exhibit a wide

range of rich dynamics. Therefore, the fractional cal-
culus starts to attract increasing attention of mathe-

maticians but also of physicists and engineers (see e.g.

[26–29]).

Many CF systems, can be modeled by the IVP (2)

with q ∈ (0, 1) and C = On×n. The fractional derivative
dq

dtq is generally denoted using the Caputo differential

operator of order q, Dq
∗ (see e.g. [30]). Thus, the IVP

(2) becomes

Dq
∗x = f(x) + pBx, x(k)(0) = x

(k)
0 , (10)

(k = 0, 1, . . . , ⌈q⌉ − 1).

⌈.⌉ denotes the ceiling function that rounds up to the

next integer, and Dm
∗ = dm

dtm , with m = ⌈q⌉, is the

standard differential operator of the integer order ⌈q⌉ ∈
N. The Caputo operator, with starting point 0, has the

following expression

Dq
∗x(t) =

1

Γ (m− q)

∫ t

0

(t− τ)m−q−1Dm
∗ x(τ)dτ.

Fig. 10 Scheme [1p1, 1p2] with p1 = 32 and p2 = 34.5 applied
to the fractional Lü system. p∗ = 33.25. (a),(b) The attractors,
A1 and A2; (c) The attractors A◦ and A∗; (d) Histograms; (e)
Cross-correlations; (f) Poincaré sections.

where Γ is the Gamma function (Appendix D). Because

Dq
∗ has an m-dimensional kernel, m initial conditions

need to be specified. Therefore, for the common case

chosen in this paper 0 < q < 1, we have to specify just

one condition, in the classical form [31]: x(0)(0) = x0.

To implement the PS algorithm in this case, it is

necessary to choose a numerical method for the solution

to the IVP (10). In this purpose we use the fractional

Adams- Bashforth- Moulton method (see Appendix D)
introduced in [31].

Let choose for our purpose the fractional variant of the

Lü system (see Table 2) which unifies the Lorenz and
Chen systems, presented by Lü et al. in [32]. As many

of the real fractional systems have the order of the frac-

tional differential operators less than 1, we fix in this

paper q = 0.9 (see [33]) which is a typical value exhibit-
ing all the relevant phenomena (the dynamics of this

system, as q varies, can be found in [16], while some

aspects of the attractors synthesis of the fractional Lü

system is presented in [34]).

Now, the IVP (10) was integrated with the fractional

Adams-Bashforth-Moulton method with step size h =
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Fig. 11 Bifurcation di-
agram for the Lü sys-
tem.

0.005 and 15000÷20000 steps, function on the dynamics
of the synthesized attractor A◦.

• A chaotic attractor A◦ can be obtained with the

scheme [1p1, 1p2] (see Fig.10 c) with p1 = 32 and

p2 = 34.5. The attractors corresponding to p1 and
p2 are plotted in Fig.10 a, b which, as can be seen

in the bifurcation diagram in Fig.11, are stable limit

cycles. p∗ = 33.25, and due to the chaotic behavior,

the AI between A◦ and A∗ is only asymptotic (see

the histograms in Fig.10 d and the Poincaré sections
in Fig.10 f). Even A◦ and A∗ are chaotic, from the

cross-correlation (Fig.10 e), one can see that they

are dephased, but still AI.

• If we choose the scheme [1p1, 1p2], with p1 = 33.5
and p2 = 35.5, a stable limit cycle A◦, for which

p∗ = 34.5, is obtained (Fig.12). The AI can be re-

marked from the Poincaré section and histograms

(Fig.12 b,c). Again, the time difference between the

underlying time series can be seen from the cross-
correlations (Fig.12 d) and time series (Fig.12 e)

For all tested CF systems, the Hausdorff distance was

only of order of 10−2, compared e.g. with CI systems,

where it was of order of 10−3. This is explainable due to
the well known O(h2) error bound for the utilized one-

step Adams-Bashforth-Moulton method for fractional

systems (detailed discussions on errors can be found in

[13]).

4.3 Discontinuous dynamical systems of integer order

Differential equations with discontinuous right-hand side,

model a whole variety of realistic applications: dry fric-
tion, electrical circuits, oscillations in visco-elasticity,

brake processes with locking phase, oscillating systems

with viscous dumping, electro-plasticity, convex opti-

mization, control synthesis of uncertain systems and so

on (see e.g. [35–37] and the references therein).

For our class of DI systems, q = 1 and C 6= On×n

and the IVP (2) becomes

ẋ = f(x) + pBx+ Cs(x), x(0) = x0, t ∈ I. (11)

In this case, the right-hand side is discontinuous for a

null set of pointsM where s vanishes, and continuous in
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Fig. 12 Scheme [1p1, 1p2], with p1 = 33.5 and p2 = 35.5 for the
Lü system. p∗ = 34.5. (a) A◦ and A∗; (b) Poincaré sections; (c)

Histograms; (d) Cross-correlations; (e) Time series.

D = Rn\M1. Obviously, the IVP (11) cannot be solved

with classical methods. For example, for the equation

ẋ = 2− 3sgn(x), (12)

where M = R\(D1

⋃

D2) = {0} with D1 = (−∞, 0),

D2 = (0,∞), the classical solutions, for x 6= 0, are

x(t) =

{

5t+ C1, x < 0,
−t+ C2, x > 0,

(13)

with the integration constantsC1, C2 but, as t increases,

these solutions tend to the line x = 0, where they can-

not continue to evolve along this line since the function
x(t) = 0 does not satisfy the equation (Fig.13). Thus,

there is no classical solution starting from 0.

Therefore, the problem has to be restarted as a dif-

ferential inclusion by using, for example, the Filippov
regularization (Appendix E). Thus, the IVP (11) trans-

forms into a differential inclusion (set-valued IVP)

1 In [38] a classification of systems modeled by the IVP (11) is
presented.

Fig. 13 Generalized solutions of the equation (12) (Sketch).

.
x ∈ f(x) + pBx+ CS(x), x(0) = x0, (14)

for almost all t ∈ I

where S is the setvalued variant of s. On mild assump-
tions, a differential inclusion has a solution that hap-

pens to be even unique, but it could have multiple so-

lutions too. To find them numerically, in our partic-

ular case of the IVP (11), we can use the standard

Runge-Kutta method within D and a special numeri-
cal method for differential inclusions in M (the simplest

forward Euler method here, see Appendix E).

Once we set the numerical method for the IVP (11),

we can apply the PS algorithm. For this class of DI
systems, we choose the Sprott system [15] (Table 2).

• First, let us choose N = 2 and the scheme [1p1, 1p2]

for p1 = 0.5 and p2 = 0.528, for which the corre-

sponding attractors A1 and A2 are chaotic (Fig.14).

We have chosen this scheme such that the obtained

average value p∗ = 0.514 belongs to a stable pe-
riodic window in the bifurcation diagram. There-

fore, the synthesized attractor is a stable limit cy-

cle (Fig.15 c). The AI is underlined by the super-

imposed Poincaré sections (with the plane x3 =
0, Fig.15 d) and histograms (Fig.15 e). The time-

difference between the trajectories is remarked from

the cross-correlation (Fig.15 f) and time series (Fig.15

g).

• As seen in Section 3, PS algorithm can be imple-
mented in random manners too. For example, for

N = 100 if one choose randomly mi ∈ {1, 2, 3} and

pi ∈ [0.45, 0.65] for i = 1, 2, . . . , 100 with uniform

distribution, and with the obtained values we launch
PS, the synthesized attractor A◦ is still AI to the

average attractor A∗ (Fig.16). However, taking ac-

count the asymptotic generation of chaotic attrac-
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Fig. 14 Bifurcation di-
agram for the Sprott
system.

tors, and the relative large value for N , the small

differences between the two attractors, A◦ and A∗

are explainable.

4.4 Discontinuous dynamical systems of fractional

order

There are real discontinuous dynamical systems which

display fractional-order dynamics. We consider here the
following class of DF systems, modeled by the IVP (2)

for C 6= On×n and p < 1

dqx

dtq
= f(x) + pBx+ Cs(x), x(0) = x0, t ∈ I. (15)

In [39] is proven that the IVP admits solutions which
can be numerically determined.

Shortly, the IVP is transformed first into a differential

inclusion via the Filippov regularization (as in Subsec-

tion 4.3). Next, using the Cellina’s theorem (see e.g. [40,

p. 84]) the set-valued IVP of fractional-order is trans-

formed into a continuous single-valued of fractional-

order IVP (see for continuous approximation of DI sys-

tems the way chosen in [41]). The approximation is

made in a sufficiently small ε-neighborhood of the dis-
continuity points. To be precise, let us consider the

simplest example of the scalar function, widely used

in examples: s(x) = c sgn(x). To approximate s(x) in

an ε-neighborhood of x = 0, we can choose one of the
simplest function, the sigmoid hε

hε (x) = c

(

2

1 + e−x/ε
− 1

)

. (16)

For our general case of the IVP (15), the continuous

approximation leads to the following continuous IVP of

fractional-order

dqx

dtq
− f(x)− pBx =

{

Cs(x), for x /∈ M,
hε(x), for x ∈ M,

(17)
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Fig. 15 Scheme [1p1, 1p2] for
p1 = 0.5 and p2 = 0.528
applied to the Sprott system.

p∗ = 0.514. (a),(b) A1 and A2;
(c) A◦ and A∗; (d) Poincaré
sections; (e) Histograms; (f)
Cross-correlations; (g) Time
series.

where hε(x) is the ε-approximation of Cs(x) in the ε-

neighborhood of the points x ∈ M , verifying the con-
tinuity condition hε(x) = Cs(x) on the boundary of

the ε-neighborhood [41]. In this way, the discontinuous

IVP became a continuous one of fractional order and a

numerical scheme for fractional-order differential equa-
tions, such as the Adams-Bashforth-Moulton method

presented in Subsection 4.2, can be used.

We consider for this case the fractional variant of a

discontinuous Chua system presented by [17] (Table 2)

for q = 0.98 (smaller values gives not rich dynamics).

As it can be seen from the bifurcation diagram (Fig.17),

for p ∈ (12, 12.55), there exists a narrow band of a kind
of “chaotic saddle”. Within this window, the underlying

chaotic attractors look as being “embedded” within this

transient chaos (see for example the attractor A1 in

Fig.18).

• Using the scheme [2p1, p2] with p1 = 12.5 and p2 =
17, the obtained synthesized attractor A◦ is AI with

A∗ for p∗ = 14 (Fig.18).

As shown in [33], we found numerically that in these

systems of lower than third-order (i.e. 3q which, for
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Fig. 16 Chaotic PS algorithm applied to
Sprott system for N = 100 and random with
uniform distribution choice for mi: mi ∈ 1, 2, 3

and pi ∈ [0.45, 0.65]. (a) A◦ and A∗; (b)
Poincaré sections; (c) Histograms; (d) Cross-
correlation.

Fig. 17 Bifurcation di-
agram for the fractional
Chua system.
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Fig. 18 Scheme [2p1, p2] with p1 =
12.5 and p2 = 17, applied to the
fractional Chua system. p∗ = 14.

(a),(b) A1 and A2; (c) A◦ and A∗; (d)
Poincaré sections; (e) Histograms; (f)
Cross-correlations.

q < 1, is less than 3) chaos still may appear (as it is
known, in the case of integer order, according to the

well-known Poincaré-Bendixon theorem, chaos appears

only at systems of minimum order three).

Conclusions

In this review we have presented the parameter switch-

ing algorithm according to which any attractor of a

dynamical system belonging to a large class of systems,

may be numerically approximated (synthesized). The
attractors synthesis is achieved by using the PS algo-

rithm, which switches periodically or randomly the pa-

rameter. This facility is enabled by the convexity of p.

The average and synthesized attractors are AI and their
underlying trajectories, time dephased. The review is le-

gitimated by the more than ten published papers each

of them containing several applications. As expected,

the performance of the PS algorithm is limited due to
the errors of the used numerical method, the length of

the time-subintervals Ik, k = 1, 2, ..., N , the number of

digits for p, the step size h and the distance in the pa-

rameter space between pk. Thus, we found thatN is not

a critical parameter (it could be even about 100). The
length of Ik (i.e. the value for mk) is a critical parame-

ter indicating for how long time the control parameter

of the considered system can take the values p = pk. We

found that a maximum value formk can be taken about
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25h. For p, 3−4 digits are enough to be compatible with

the smallest distance between the pk in the bifurcation

diagrams. Moreover, some real physical chaotic systems

may have an infinite number of different states or limit

cycles with infinite period. But a computer simulated
system has a finite number of states; if the precision of

the computer is n bits and the system to be modeled

has k variables, the total number of system states is lim-

ited to 2k∗n; hence, given a determined state, it will be
repeated sooner or later and the system will become pe-

riodic, with a period equal to the separation of the two

occurrences of the state. The PS method can alleviate

this inaccuracy and make possible the approximation

of a computer simulated system to a real one, although
it may be necessary to use a sequence of parameter val-

ues lasting as the whole segment of the system to be

modeled (see e.g. [42]). Some open problems are: the

analytical proofs for the Lemma 1 for CF, DI and DF
systems, not only for CI as done in [11]; an analytical

proof for the continuity of the bijection F ; a detailed

study of the time delay between the trajectories of A◦

and A∗; the effect of noise on the results; a comparison

with the complex systems (fractals), where the param-
eter switching may lead too to some interesting results

[8].

APPENDIX

A Cross Correlation

As known, the cross-correlation of two signals is a measure of
the similarity of two waveforms. The cross-correlation has ranges
from -1.0 to +1.0. The closer it is to +1 or −1, the more closely
the two compared variables are related. The correlation of two sig-
nals (the attractors underlying trajectories in our case) may indi-
cate that one of them is delayed in time with respect to the other.
The maximum value (close to unity) of this cross-correlation is
obtained when the two signals are in closest alignment with each
other. The value −1 means the signals are identically matched
but opposite in phase, while a value approaching zero indicates
a low degree of similarity (see the blue band around the horizon-
tal axe in our images). In this paper, the results were obtained
with the crosscorr Matlab function with approximate 95 percent
confidence interval.

B Hausdorff distance

The Hausdorff distance in a metric space, measures how far two
compact nonempty subsets are from each other. The classical
Hausdorff distance between two (finite) sets of points, A and B,
is defined as [43, p.114]

DH (A,B) = max

{

sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)

}

,

where d(x, y) is the classical distance between two points in the
considered space.

If the two sets are curves, DH is defined as the maximum distance
to the closest point between the curves. Thus, if the curves are de-
fined as the sets of ordered pair of coordinates A = {a1, a2, . . . , an}
and B = {b1, b2, . . . , bm} the distance to the closest point be-

tween a point ai to the set B is

d(ai, B) = min
j

‖bj − ai‖ .

Thus, the Hausdorff distance is

dH (A,B) = max

{

max
i

{d(ai, B)} ,max
j

{d(bj , A)}

}

.

C Sketch of the analytical proof of Lemma 2

Next, the main steps of the proof presented in [11] for the lemma
ensuring the AI between A◦ and A∗ in the case of CI systems,
are pointed out.

Consider the IVP (1) with C = On×n and q = 1 satisfying
the assumptions stated in Section 2 and expressed for the general
case of Rn, in the following form

ẋ(t) = f(x(t)) + p (t/λ)Bx(t), x(0) = x0, (18)

t ∈ I = [0,∞),

where λ ∈ R∗
+ is a positive real number which will be stated later,

and p : I → Rn is considered as a piecewise continuous periodic
function with period T0, and mean value q, i.e.

1

T0

∫ t+T0

t

p(u)du = q t ∈ I.

Let us define the average model of (18) obtained with the PS

algorithm, expressed as follows

ẏ = f(y) + qBy, y(0) = y0. (19)

The IVP (18) models the PS algorithm and generates the syn-
thesized attractor A◦, while the IVP (19) represents the system
whose solution approximates the average attractor A∗.

We have to prove that the solutions of the equations (18) and
(19) differ by less than λ2 for λ sufficiently small, via the so
called order function defined in terms of approximations2.

Let next suppose that (19) satisfies the assumption H1 and ad-
mits s : I → R as the unique solution.

Linearizing (19) on a neighborhood of s, one obtains the following
IVP

ε̇(t) = [E(t) + qB]ε(t), ε(0) = ε0, (20)

where ε(t) = y(t) − s(t) and E(t) denotes the Jacobian of f
evaluated at s(t).

Because s(t) is the solution in (19), ε(t) = 0 for t ∈ I, should be
a solution of (20).

If we linearize the IVP (18) for x ∈ Γs (the domain of attraction
of ε = 0) one obtains

ė(t) = [E(t) + p(t/λ)B]e(t), e(0) = e0,

where e(t) = x(t)− s(t).

2 The order function δ(λ2), introduced in [44, p.11], implies
that there exists k s.t. |δ(λ2)| ≤ kλ2 when λ is sufficiently small.
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Then, the theorem ensuring the AI between the attractors of the
dynamical system modeled by the IVP (18) and IVP (19) can be
enounced.

Theorem Let assume that Eq. (20) is uniformly exponentially
stable, i.e. there exist the constants K > 0, µ > 0 such that

ε(t) ≤ K||ε0|| exp(−µt).

Then, for e0 = ε0, there exists a positive scalar λ > 0, such that
limt→∞ ||e(t)− ε(t)|| = δ(λ2), where δ(λ2) is an order function.

Proof The complete proof can be found in [11] and follows mainly
the idea given in Chapter 4 of [44]. The existence interval I is par-
titioned as follows: I = [0, λT ]

⋃

[λT0, 2λT0] · · · . In each subin-
terval In = [nλT0, (n+ 1)λT0] , n = 1, 2, . . ., Eq. (20) has the
solution εn(t). If on these subintervals, the initial condition is
chosen εn(nλT0) = e(nλT0), using a generalized Peano-Baker
series [45], the Gronwall’s inequality, through straightforward al-
gebraic operations, the following inequality is inductive proved

||e((n+ 1)λT0) − εn((n + 1)λT0)|| ≤ δ(λ2),

for any n. Taking the limit n → ∞, the proof is complete. ⊓⊔

D Adams-Bashforth-Moulton scheme for

fractional ODEs

Next, a brief presentation of the Adams-Bashforth-Moulton scheme
[31] is presented. Let us consider the IVP (10). Specifically, the
method implies a discretization of I with grid points ti = hi, i =
0, 1, . . . with a preassigned step size h. First, a preliminary ap-
proximation xP

i+1 for x(ti) (the predictor phase) is computed via
the formula

xP
i+1 =

⌈q⌉−1
∑

j=0

tji+1

j!
x
(j)
0 +

1

Γ (q)

i
∑

j=0

bj,i+1g(xj),

where bj,i+1 have the form

bj,i+1 =
hq

q
((i+ 1− j)q − (i − j)q) .

Then, the final approximation xi+1 for x(ti+1) (the corrector

phase) is

xi+1 =

⌈q⌉−1
∑

j=0

tji+1

j!
x
(j)
0

+
hq

Γ (q + 2)





i
∑

j=0

aj,i+1g(xj) + g(xP
i+1)



 ,

with

a0,i+1 = iq+1 − (i− q)(i+ 1)q ,

and

aj,i+1 = (i− j + 2)q+1 + (i− j)q+1 − 2(i− j + 1)q+1,

for j = 1, 2, . . . , i.
The Gamma function, Γ , is approximated in this work with

the so-called Lanczos approximation [46]

Γ (z) =

∑6
i=0 piz

i

∏6
i=0(z + i)

(z + 5.5)z+0.5e−(z+5.5).

Table 4 Coefficients of the Lanczos approximation.

i pi

0 75122.6331530
1 80916.6278952
2 36308.2951477
3 8687.2452971
4 1168.9264948
5 83.8676043
6 2.5066283

for z ∈ C with Re(z) > 0. The coefficients pi are shown in Table
4.

While in the standard methods for ODEs of integer order,
the current approximation xk depends only on the results of a
few backward steps, like all reasonable numerical methods for
fractional differential equations, the fractional scheme Adams-
Bashforth-Moulton requires the entire backward integration his-
tory at each point in time. Thus, each calculated value xk depends
on all previous values x0, x1, . . . , xk−1. This characteristic implies
a serious drawback with respect to the required computing time.
For example, to obtain 4000 points within some attractor, about
8 × 106 iterations are necessary. However, this is necessary to
appropriately reflect the memory effects possessed by fractional
differential operators.
A detailed analyze of this method can be found in [13] and a
background on fractional differential equations is presented in
[14].

E Filippov regularization

Let consider the following general IVP with discontinuous right-
hand side

ẋ = f(x), x(0) = x0, t ∈ I, (21)

with f locally bounded on Rn. In particular, the discontinuity is
due to the discontinuity of the state variable, of the associated
vector field, of Jacobian (partial derivatives) or higher order dis-
continuity. The continuity domain consists in a finite m number
of open regions Di ⊂ Rn, i = 1, 2, . . . ,m, the discontinuity set
M being M = Rn\

⋃m
i=1 Di.

The IVP (21) may have not any solutions in the classical sense.
Therefore, in this paper we chosen the way given by [47], which
transforms the IVP (21), via the differential inclusion approach,
into a multi-valued Cauchy IVP

ẋ ∈ F (x), x(0) = x0, for almost all t ∈ I, (22)

where, F : Rn ⇉ Rn is a set-valued function into the set of all
subsets of Rn. For our class of systems, F can be defined using
the so called Filippov regularization

F (x) = con lim
x′→x

f(x′),

where con means the convex hull and limx′→x f(x′) represents
the set of all limits for all convergent sequences f(xk) with xk →
x. If x ∈ M , F (x) is a set, while for x /∈ M , F (x) consists in a
single point f(x). As example, for the sign function the Filippov
regularization gives the following set-valued function

Sgn(x) =







{−1}, x < 0,
[−1, 1] x = 0,
{+1} x > 0.
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For example, the Filippov regularization applied to the Example
(12) leads to the following differential inclusion

ẋ ∈ 2− 3Sgn(x). (23)

Definition [47] A generalized solution (or Filippov solutions) of
the IVP (21) is an absolutely continuous vector-valued function
x : I → Rn verifying the IVP (22) for a.a. t ∈ I.

Even the IVP (21) may not have any classical solutions, the set-
valued IVP (22) may have a unique or several generalized so-
lutions. For example, the equation (12), after regularization be-
comes the set-valued problem (23) and has the following gener-
alized solutions: if x0 > 0, then x(t) = −t + x0 for t < x0 and
x(t) = 0 for t ≥ x0. In other words, the solution can be pro-
longed continuous along the axis x = 0. If x′

0 < 0, the solution is
x(t) = 5t + x′

0 for t < x′
0 and x(t) = 0 for t ≥ x′

0 (Fig.13).
The background of differential inclusions and their solutions can
be found e.g. in [40] and [48]. The existence and uniqueness of
solutions for our class of DI systems are presented in [49] and
will be not considered here.

To solve numerically the IVP (21) special numerical methods
for differential inclusions are necessary. However, for our class of
IVPs, due to the presence of s functions, the discontinuity ap-
pears only in a finite null set M, where actually the IVP is a
set-valued problem. For the points x ∈ Di, the IVP is a contin-
uous problem. Therefore, we can integrate in Di the IVP (21)
using e.g. the standard Runge-Kutta method, while for x ∈ M ,
a numerical method for the corresponding differential inclusion
ẋ ∈ F (x) has to be used. Precisely, when the trajectory enters
the discontinuity surface, we have to choose for derivative of so-
lution, generally for some finite time, a value within the set F (x)
while a numerical method for differential inclusions is utilized
(the simplest one is the adapted forward Euler method see e.g.
[12,25]). For example, when x = 0 in the Example (12), we have
to solve the differential inclusion ẋ ∈ [−1, 5]. There are several
possibilities to manage this problem using e.g. so called selection

strategies (see [50]). In this paper we utilized the simplest way,
namely the random strategy which implies a randomly choice of
a value within F (x) (the interval [−1, 5] in our example). There

are several possibilities to find the moments when the trajectory
enters and leaves the discontinuity surfaces (see e.g. [37]) during
which the chosen method solves the differential inclusion.
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Birkhäuser, Boston (1990)

49. Danca, M.-F.: On a class of discontinuous dynamical system.
Miskolc Mathematical Notes, 2(2), 103–116 (2001)

50. Kastner-Maresch, A., Lempio, F.: Difference methods with
selection strategies for differential inclusions. Numer. Funct.

Anal. Optim. 14(5–6), 555–572 (1993)




