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Abstract In this paper we investigate the possibility
to formulate an implicit multistep numerical method for

fractional differential equations, as a discrete dynamical

system to model a class of discontinuous dynamical sys-

tems of fractional order. In this purpose, the problem is
continuously transformed into a set-valued problem, to

which the approximate selection theorem for a class of

differential inclusions applies. Next, following the way

presented in the book of Stewart and Humphries [1] for

the case of continuous differential equations, we prove
that a variant of Adams-Bashforth-Moulton method for

fractional differential equations can be considered as

defining a discrete dynamical system, approximating

the underlying discontinuous fractional system. In this
purpose the existence and uniqueness of solutions are

investigated. One example is presented.

Keywords fractional systems · discontinuous sys-

tems · chaotic attractors · Filippov regularization ·
Adams-Bashforth-Moulton method for fractional

differential equations

1 Introduction

Discontinuous differential equations modeling real phe-

nomena, mainly in the field of dry friction mechanics,

have been intensively studied especially after the oc-
currence of the pioneering work of Filippov [2] who had
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the idea to avoid the lack of classical solutions of this
type os equations, by replacing the discontinuous single-

valued initial value problem with a set-value one doted

with enough regularity. Then, based on differential in-

clusions theory (see e.g. the known books of Aubin and
Cellina [3] and Aubin and Frankowska [4]), a huge liter-

ature, motivated by mathematical and physical reasons,

has been dedicated to discontinuous (Filippov) systems

that arise mainly in mechanics (examples can be found

in the book of Wiercigroch and de Kraker [5]) but also
in other many field such as: chaotic circuits, convex op-

timizations, uncertain systems and so on.

On the other side, despite the fact that fractional
derivatives date from 17th century (when to l’Hospital’s

famous question: ”What does dn

dxn f(x) mean if n =

1/2?” Leibniz answered: ”It will lead to a paradox, from

which one day useful consequences will be drawn”),
they were not used than in the last few decades, when

the use of fractional calculus allowed to study the enor-

mous number of examples of systems in many domains

such as: physics, chemistry, engineering, finance and so

on (one of the early works being the book of Oldham
and Spanier [6] or the papers of Caputo [7,8]). A pos-

sible explanation for this delay could be the fact that

the fractional derivatives have no geometrical interpre-

tation [9] or the fact that there are multiple definitions
for fractional derivatives [10]. However, because frac-

tional differential equations better describe the physi-

cal models, now the fractional derivatives has got focus

(see references on their applications in [11]).

In this paper we are concerned with the ”combi-

nation” of these categories of systems, namely to con-

sider a class of discontinuous systems of fractional order
which, on our knowledge, was not studied yet. Precisely,

we are interested in the possibility to find a discrete dy-

namical system, generated by a numerical method for
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fractional differential equations, which models the un-

derlying fractional discontinuous system.

Consider the discontinuous Initial Value problem

(IVP) of fractional order

Dq
∗x = f(x) := g(x) +As(x),

Dq−k
∗ x(0) = xk

0 , t ∈ I = [0,∞), k = 0, 1, . . . , ⌈q⌉ − 1,

where we assume g ∈ C (Rn) , x(t) ∈ R
n denotes a vec-

tor valued function of t ∈ I, xk
0 ∈ R, A is n×n squared

real matrix, and s is a piece-wise linear (discontinuous)
function s(x) = (sgn(x1), sgn(x2), ..., sgn(xn))

T . Dq
∗,

for q some positive real number, is the fractional oper-

ator chosen in this paper as being the Caputo operator

with starting point 0 [6]1

Dq
∗u(t) =

1

Γ (q − n)

t
∫

0

u(n) (τ)

(t− τ)
q−n+1 dτ,

for n − 1 < q < n, and Γ (m) the factorial (Gamma)

function given by the following expression

Γ (m) =

∞
∫

0

e−xxm−1dx,

for which, when m is an integer, it holds that

Γ (m+ 1) = m!

D
⌈q⌉
∗ stands for the standard differential operator. Be-

cause in most applications in science and engineering

q ∈ (0, 1], we have to specify in this case in the IVP

just one initial condition. For practical reasons, it is

usually to specify the initial conditions under the in-

teger derivatives form (way proposed by Caputo in [7]
fact which represents another reason to use Caputo op-

erator). These data typically have a well understood

physical meaning and can be measured (more details

on the choice of initial conditions may be found in [12]
and [13]). Thus. the IVP becomes

Dq
∗x = f(x) := g(x) +As(x), (1)

x(k)(0) = x
(k)
0 , t ∈ I, k = 0, 1, . . . , ⌈q⌉ − 1,

Remark 1 i) Since f(x) does not depends explicitly on
t, we can use use homogeneous initial conditions (given

at t = 0);

ii) The IVP (1) represents a general case since, function

of A and q, it embeds three common cases:
-If all entries in A are zero and q is integer, the IVP

models a continuous dynamical system;

1 There are many ways to define a fractional differential oper-
ator (see e.g. [8]). We have chosen here the Caputo operator as
being the most used in practical problems.

-If all entries in A are zero and q is a fractional

number, the IVP models continuous fractional dynam-

ical systems;

-In the rest of the cases, the IVP defines dynamical

systems discontinuous with respect to the state vari-
able.

2 Continuous approximation of IVP (1)

The existence and uniqueness of solutions to discon-
tinuous IVPs (of fractional or integer order), such as

(1), are essential because, due to the right-hand discon-

tinuity, the classical solutions of IVP might not even

exist. For discontinuous vector fields, the existence and

uniqueness of solutions is not guaranteed in general, no
matter what notion of solution is chosen. Moreover, the

classical notion of solution for ODEs is too restrictive

in this case. A possible solution to encompass this diffi-

culty is to shift the single valued IVP into a set-valued
one, namely a differential inclusion, solution given by

Filippov in [2] using a generalized concept of solution

Dq
∗x ∈ F (x),

where F : Rn =⇒ R
n is a set-valued vector function

defined on the set of all subsets of Rn. The simplest

definition of F is the following convex form [2]

F (x) =
⋂

ε>0

⋂

µ(M)=0

convf ((x+ εB) \M) , (2)

where, M is the set of discontinuity points of f , B the

unit ball in R
n, µ the Lebesgue measure. At the points

where the function f is continuous, F (x) will consist of

one point, which is the value of f at this point, while

at the discontinuity points, F (x) is the convex hull of

values of f(x∗), x∗ ∈ M , given by (2) ignoring the be-
havior on null sets.

For the case n = 1, the Filippov regularization applied

to the sign function leads to the set-valued (sigmoid)

function

Sgn(x) =







{−1} for x < 0

[−1, 1] for x = 0

{+1} for x > 0

,

Applying the Filippov regularization to the right
hand side of the IVP (1) one obtains the following set-

vued IVP of fractional order

Dq
∗x ∈ F (x) := g(x) +ASgn(x), (3)

x(k)(0) = x
(k)
0 , k = 0, 1, . . . , ⌈q⌉ − 1, for a.a. t ∈ I.
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Remark 2 The next notions and results are presented

for the metric space Rn since the most applications are

defined in this space, but they are true in general metric

spaces.

Definition 1 A selection of a given set-valued function

F : Rn =⇒ R
n is a function h : Rn → R

n satisfying

h(x) ∈ F (x), ∀x ∈ R
n.

In [15] the following property for the right-hand side of
(3) is proved

Proposition 1 The set-valued function F in (3) is up-

per semicontinuous with closed and convex values.

The next result is known as Approximate Selection The-

orem or Cellina’s Theorem [3,4]

Theorem 1 Let F : Rn =⇒ R
n be an upper semicon-

tinuous. If the values of F are nonempty and convex,

then for every ε > 0, there exists a locally Lipschitz

single valued function hε : R
n → R

n such that

Graph(hε) ⊂ B(Graph(F ), ε).

Remark 3 Cellina’s Theorem asserts too that the graph

of hε is embedded in an ”ε− tube” around the graph of

F (i.e. belongs to the convex hull of the image of F ).

Moreover, because the proof is constructive, it allows
to determine hε for the practical examples (selection

strategies can be found in [14]).

Theorem 2 The set-valued IVP (3) with g continuous

admits a locally Lipschitz selection.

Proof It is easy to verify that F is upper semicontinuous

and has closed and convex values due to the symmetric

interpretation of a set-valued function as a graph [15].

Thus, F verifies the conditions in the Cellina’s Theorem

1 and therefore, admits a locally Lipschitz selection.

Thus, the set-valued initial value problem (3) trans-
forms into the following single-valued continuous IVP

of fractional order

Dq
∗x = hε(x), x

(k)(0) = x
(k)
0 , k = 0, 1, . . . , ⌈q⌉−1, t ∈ I.

(4)

3 Numerical solutions of fractional differential

equations

Consider next, for the sake of simplicity, the scalar form

of IVP (4). However, all the results can be extended to

systems of equations without any problems.

Theorem 3 The IVP (4) admits a unique solution on

I.

Proof hε being locally Lipschitz, the classical theorem
for existence and uniqueness applies. (see also [11, Chap-

ter 6] where the existence and uniqueness for general

fractional equations are treated)

There are only a few numerical methods for frac-

tional differential equations (see e.g. [10,16]). Also, there

are some frequency domain techniques based on Bode

diagrams, which allow to obtain a linear approxima-
tion for the fractional-order integrator [17]. However,

because it is not clear if they can be generalized, we

focus in this paper on a variant of the classical Adams–

Bashforth–Moulton (ABM) integrator that has been

constructed and analyzed in [12] for fully general sets of
equations without any special assumptions. Moreover,

the method is easy to implement computationally.

We assume that we are working on the time inter-

val [0, T ] , T > 0, partitioned by the equispaced grid:
{t0, t1, . . . , tN} with tn = nh, N some positive integer

and h = T/N. Denote by xj the numerical approxima-

tion of x(tj) for j = 0, 1, . . . , n.

The predictor phase (the fractional Adams–Bashforth

method) it then first computes a preliminary approxi-
mation xp

i+1

xp
i+1 =

⌈q⌉−1
∑

j=0

tji+1

j!
x
(j)
0 +

1

Γ (q)

i
∑

j=0

bj,i+1f (xj) , (5)

where

bj,i+1 =
hq

q
[(i+ 1− j)

q
− (i− j)

q
] .

Then, the corrector phase (the fractional variant of

the one-step Adams–Moulton method) determines the

actual final approximation xi+1 which is

xi+1 =

⌈q⌉−1
∑

j=0

tji+1

j!
x
(j)
0 + (6)

hq

Γ (q+2)

(

i
∑

j=0

aj,i+1f (xj) + f
(

xp
n+1

)

)

,

with

aj,n+1 =















nq+1 − (n− q) (n+ 1)
q

if j = 0,

(n− j + 2)
q+1

+ (n− j)
q+1

−2 (n− j + 1)
q+1

if 1 ≤ j ≤ n,
1 if j = n+ 1.

Thus, the fractional ABM method is given by the

equations (5) and (6) being a variant of the classical

second-order ABM method.
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Fig. 1 The steps to obtain the discrete numerical approximation.

There are several ways to approximate Gamma func-

tion Γ , the most utilized being the Lanczos approxima-

tion [18].

The stability properties are at least as good as the
corresponding properties of the classical second-order

ABM method assuring the convergence of the invariant

sets of the fractional ABM method to the real invariant

sets of underlying system.

Remark 4 In contrast to differential operators of inte-
ger order, fractional derivatives are not local operators.

Therefore, to approximate Dq
∗u(t) we have to take the

entire history of u (i.e., all function values u(τ) for

0 ≤ τ ≤ t) into account. This is an impediment due

to significantly higher computational effort. However,
this property is highly desirable from the physical point

of view because it allows us to model phenomena with

memory effects.

4 Numerical approximation of the IVP (1)

In this section, following the idea presented in [1] for

continuous systems, where it is proved that an implicit
multistep numerical method posses invariants sets (like

attractive fixed points, limit cycles or chaotic attrac-

tors) which, via convergence property, may approach

the real invariant sets, we prove that this way can be
adopted for our class of systems.

In this purpose consider the ABM scheme (5)-(6) in

the following form

H (xn+1, xn) = 0, x0 = x(0), (7)

where H : Rn × R
n → R

n.

Definition 2 [1] Equation (7) is said to define a dy-

namical system on a subset E ⊆ R
n if, for every x0 ∈ E,

there exists a unique solution y ∈ E of H (y, x0) = 0.

Remark 5 [1] When the solution of (7) is not unique,

Definition 2 gives the notion of so called generalized

dynamical systems.

The next theorem is the main result of this paper

which proves that the ABMmethod for fractional differ-

ential equations may be viewed as a discrete dynamical

system which models our class of systems

Theorem 4 The ABM scheme (5)-(6) applyed to the

IVP (4) defines a dynamical system.

Proof The existence and uniqueness of solution to (4)

is given by Theorem 3. Also, due to the convergency
of the fractional ABM method (5)-(6) (see for conver-

gency e.g. [13]), equation (7) admits a unique solution.

Therefore, by Definition 2, the fractional ABM method

(5)-(6) defines a dynamical system.

Remark 6 We can consider that Theorem 4 indicates

how a fractional system can be numerically approxi-

mated.

Summarizing, the steps which lead to numerical ap-

proximation of IVP (1) and defines a discrete dynamical

system, are depicted in Fig.1.

Example

Let us consider the fractional discontinuous variant

of the Chen’s system [19]2







Dq
∗x1 = a (x2 − x1)− 0.5sgn(x1),

Dq
∗x2 = x1(c− a)− x1x3 + cx2,

Dq
∗x3 = x1x2 − bx3,

(8)

with a = 35, b = 3 and c = 28.

2 which can be considered as being a fractional jerk system

(see [20]).
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Here

g(x) =





a (x2 − x1)
x1 (c− a)− x1x3 + cx2

x1x2 − bx3



 ,

and

A =





1 0 0
0 0 0

0 0 0



 .

Two chaotic attractors (for q = 1 and q = 0.8)

are plotted in Fig.2 a and b, while in Fig.2 c a sta-

ble fixed point is presented. The utilized step size is
h = 0.005, the number of time steps N = 10, 000 and

the initial data were the same for each case. To approx-

imate the first component of the right-hand side of (8),

denoted by f1 (x1, x2) , a cubic surface was utilized fol-

lowing the algorithm proposed in [21]. The graph of the
set-valued function F1, before and after his approxima-

tion, is presented in Fig.3a,b.

Remark 7 As known yet, chaos may be found at (frac-

tional) systems of order less than 3 and not as believed

before when, due to the Poincaré-Bendixon theorem,

the nonlinear systems of integer order must have a min-
imum order of 3 to display chaotic motion. For our ex-

ample chaos persists while q is set about q = 0.793,

when the order of system is 3 × 0.793 = 2.379 and the

system stabilizes the trajectory which is attracted to
one of his two fixed points (Fig.2 c). For the continuous

fractional Chua’s system, chaotic attractors appears for

order as low as 2.7 [22]. Moreover, chaos may appears

even in systems with order less than 2, as in the case

of nonautonomous Duffing systems of fractional order
[23].

5 Comments

In this paper is discussed the possibility to consider

the fractional ABM method as a discrete dynamical

system for a class of fractional discontinuous systems
modeled by the IVP (1), after which the IVP was first

approximated using Cellina’s Theorem.

Another possibility to approach these systems is to

deal with the fractional differential inclusions obtained

by the Filippov regularization (see e.g. the recent pa-
per of Chang and Nieto [24] for the existence of solu-

tions of fractional differential inclusions with boundary

value conditions, or [25]). However, for the practical ex-

amples, the numerical approach proposed here is more
convenient.

A still open problem occurring when a numerical

method for some class of continuous or discontinuous

(of fractional or integer order) system is to realize a

qualitative and comparative study of the dynamics of

both systems, the underlying and the approximated

one.

Another open problem is to investigate the possi-

ble influence of the discontinuity on the system order
reduction when chaos disappears.
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