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In this letter we present a simple and accessible way to enhance the stable behaviors of a chaotic
dynamical system which models a cancer growth, presented in [Itik & Banks, 2010]. The al-
gorithm presented in [Danca et al., 2011], approximates numerically any attractor of a system
belonging to a defined class of dynamical systems, by alternating the control parameter in rela-
tively short periods of time. Switching the control parameter within a set of values corresponding
to some chaotic behaviors, the result may be a stable evolution or, reversely a chaotic behavior
may be obtained by switching the parameter within a set of values corresponding to stable evolu-
tions. This apparently surprising phenomenon is in fact a generalization of the known Parrondo’s
paradox.

1. Introduction

There are several mathematical models describing cancer behavior (see e.g. [Gatenby et al., 2003] or [Roose
et al., 2007]). These were generally divided into models described by diffusion partial differential equations,
and by ordinary differential equations. Since tumor diseases are one of the greatest killers, their stabilization
is biologically motivated. In this letter we use a simple and accessible way to enhance any stable attractors
of a chaotic dynamical system presented in [Itik & Banks, 2010], which models a cancer growth being
described by the following set of three-dimensional ODEs

ẋ1 = x1(1− x1)− x1x2 − 2.5x1x3,
ẋ2 = 0.6x2(1− x2)− 1.5x1x2,
ẋ3 = 4.5x1x3

x1+1 − 0.2x1x3 − px3,
(1)

with p the positive real control parameter. Its reach dynamics are revealed by the reverse bifurcations
scenarios (see Figures 1, 2 for the component x2). To obtain the stable behaviors, we need a set of pa-
rameter values PN = {p1, p2, . . . , pN} and a single-step scheme for ODEs (here the standard RK method)
with step-size h. The utilized algorithm, named hereafter Parameter Switching (PS), allows the numerical
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Fig. 1. Bifurcation diagram for x2.

approximation of any attractor (chaotic or not) of a dynamical system belonging to a class of systems de-
pending linearly on the control parameter p. For this purpose, p is switched within the set PN for some finite
short period of time while the system is numerically integrated on some interval of time I = [0, T ], T > 0.
The obtained attractor is a numerical approximation of one the systems’s attractors.

The class of systems, where the algorithm has been applied, is modeled by the following autonomous
initial value problem

ẋ = f (x) + pAx , x(0) = x0, t ∈ I, (2)

where f : Rn → Rn is a function continuous with respect to the state variable, x ∈ Rn and A = (ai,j)n³n
is a real constant matrix.

To implement numerically the PS algorithm, the length of the time intervals in which p is switched
may be taken as multiple of h: mih for mi, i = 1, 2, . . . , N , some positive integers [Danca et al., 2011] (see
the pseudo code in Table 1)

Under the uniqueness assumption on IVP (2), to each p and initial conditions there corresponds a
unique attractor (which can be chaotic or regular (here stable limit cycles of fixed points)). Now it is
easy to understand why PS algorithm is a generalization of Parrondo’s paradox according to which losing
strategies can win i.e. it is possible to mix two losing games into a winning combination: ”losing + losing =
winning” [Harmer et al., 2000] or, in other words: ”two ugly parents can have beautiful children” (Doron
Zeilberger on receiving the 1998 Leroy P. Steele Prize). If by ”loosing” gain one consider ”chaos” and
by ”winning” gain, ”regular”, we obtain the following form: ”chaos+chaos=regular” which is actually
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Fig. 2. Detail D of bifurcation diagram.

the simplest variant for PS algorithm. Thus, if p is alternated within the set {p1, p2} with p1 and p2

corresponding to chaotic attractors, it is possible to obtain a regular attractor but also a chaotic one.
Obviously, there are several other possibilities such as: ”regular+regular=chaos”, ”regular+chaos=regular”
and so on. Therefore, switching p with PS algorithm while the IVP is integrated, within whatever set of
values, actually we alternate between regular and chaotic attractors, i.e. a generalization of Parrondo’s
paradox, since the result can be a regular attractor or a chaotic one.

The initial value problem (2) is enough general to include, beside the system modeled by (1), the great
generality of known systems such as Lorenz, Chen, Rössler, Lü, some classes of networks and so on but
also systems modeling the course of some epidemics (such as SIR models [Kermack & McKendrick, 1927]).
Moreover, on our knowledge, stabilizing the behavior of a model describing cancer behavior, by switching
the control parameter represents a novel approach.

In this letter the attractors will be considered simply as trajectories after neglecting a sufficiently long
period of transients [Foias et al., 1995].

As shown in [Danca et al., 2011], the attractor obtained with PS algorithm, denoted A∗, is approxima-
tively identical to the attractor, denoted Ap∗ , obtained by integrating the initial value problem for p = p∗
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Fig. 3. Stable limit cycle obtained with AS algorithm for p1 = 0.53 and p2 = 0.58 for which p∗ = 0.555. A∗ is plotted in red
while Ap∗ in blue: (a) Overlapped phase portraits. (b) Overlapped Poincaré sections with the plane x3 = 0.3. (c) Overlapped
histograms.

with p∗ given by the following expression

p∗ =

N∑
i=1

mipi

N∑
i=1

mi

. (3)

The algorithm is useful when, for objective reasons, some values for p cannot be set and we want to
obtain the underlying attractor, avoiding the tedious calculations implied by the known chaos control and
anticontrol algorithms. Also, the algorithm may be used to explain some natural processes in Nature when,
accidently, the parameters may switch within a set of values.

In this letter we give computationally evidence of our results, namely we show that in phase portraits,

Table 1. Pseudo-code of the PS algorithm.

t = t0
REPEAT

FOR i = 1 to N
FOR k = 1 to mi

one step integration with p = pi

t = t + h
ENDFOR

ENDFOR
UNTIL t ≥ T
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time series, histograms and Poincaré sections, the trajectories of A∗ and Ap∗ are approximatively identical
and Hausdorff distance between trajectories is of order of 10−3÷−5 (for the analytical proof see [Danca et
al., 2011]).

2. Finding stable attractors

Because stable motions in the case of systems like those modeled by (1) are essential, in this letter we are
interested in finding the stable regular behaviors.

To obtain a stable trajectory of (1), we have to chose (helped e.g. by bifurcation diagram) a desired value
p∗ for which the system behaves regularly and, for fixed h, N and PN , find the values mi, i = 1, 2, . . . , N ,
such that p∗,mi, and pi verify (3). Next, the PS algorithm is applied.1

Let chose for example p∗ = 0.555 for which the system behaves on a stable limit cycle (Figure 2) and
P2 = {0.53, 0.58} according to which the system behaves chaotically. A solution to (3) is, for example,
m1 = m2 = 1. Thus, p∗ = 0.555 = (1 × p1 + 1 × p2)/2 = (0.53 + 0.58)/2. The identity between A∗ and
Ap∗ can be seen from the overlapped phase portraits, histograms, and Poincaré sections (Figures 3 (a), (b)
and (c) respectively). The Hausdorff distance (calculated as in [Falconer, 1990, p 114]) is DH = 2 × 10−5

which confers a good approximation2. Therefore, a characteristic stable motion was obtained by switching
p between p1 and p2, which in Parrondo’s paradox terms means: ”chaos+chaos=regular”.

Due to the non-unicity in (3), the same attractor can be obtained with other switching schemes.
For example, the same stable limit cycle corresponding to p∗ = 0.555 can be obtained with P5 =
{0.198, 0.302, 0.402, 0.710, 0.806} (for which we have, respectively, ”regular”, ”regular”, ”chaos”, ”regu-
lar”, ”regular”), and m1 = m2 = 2,m3 = 1, m4 = 4 and m5 = 3 since equation (3) is again verified (Figure
4). If we denote ”chaos” by C and ”regular” by R, we have: ”2R+2R+C+4R+3R=R”. However, this time,
even the two attractors , A∗ and Ap∗ are well matched, one can be seen some difference between them (see
the detail in Figure 4) and the trajectory of A∗ spirals around that of Ap∗ .

Fig. 4. Phase portrait of the same stable limit cycle for p∗ = 0.555 obtained by switching the parameter values
0.198, 0.302, 0.402, 0.710, 0.806. The detail shows that A∗ spirals around Ap∗ .

1Obviously, (3) has several solutions.
2This means that A∗ belongs inside a three-dimensional ε− tube around A∗p, with ε = 2× 10−5.
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Fig. 5. Two synthesized stable limit cycles corresponding to p∗ = 0.517 (a) and p∗ = 0.615 (b).

Fig. 6. Time series of x1 for the trajectories corresponding to A∗ and Ap∗ for p∗ = 0.555. (a) The two trajectories are shifted
in time one to each other. (b) Detail.

Other two stable limit cycles obtained with PS algorithm, corresponding to p∗ = 0.517 and p∗ = 0.615
with P ′

2 = {0.505, 0.523}, m1 = m2 = 1 and P ′′
2 = {0.45, 0.78}, m1 = m2 = 1 respectively, are presented in

Figure 5 (a) and (b) respectively.
As can be seen in Figure 6 for the time series of the case presented in Figure 3, the trajectories

corresponding to A∗ and Ap∗ are time shifted one to each other. We have remarked that this shift takes
place in all studied examples and can be forward or backward, function on mi and the order position of p∗
within the set PN [Danca et al., 2011].

For a fixed set PN , due to the convexity of (3), even random choices for mi may leads to the same
result: A∗ is an attractor belonging to the set of all attractors for the considered system (obvious, the
values should be chosen with some care due to the inherent numerical errors). For example, while PS runs,
choosing randomly (with uniform distribution) mi within {0, 1}, by switching the values 0.505 + k ∗ 0.01
for k = 0, 1, . . . , 10, with k 6= 5, again A∗ and Ap∗ match (Figure 7). However, as expected, the difference
between the two trajectories is bigger now and the Hausdorff distance is DH = 4.6 × 10−4 (see detail in
Figure 7).

Using the same way, chaotic attractors can be synthesized too. For example, a chaotic behavior corre-
sponds to p∗ = 0.544 and can be obtained switching p within the values p1 = 0.535 and p2 = 0.553 with
m1 = m2 = 1 (Figure 8). Now, because A∗ is chaotic, the underlying solution is obtained, theoretically,
by infinite period of time. Therefore, as can be seen in Figure 8, there are some relative small differences
between the two attractors, even the two attractors still match. Hausdorff distance calculated for the first
300000 points, as expected, is bigger: dH = 2× 10−3.



June 8, 2011 9:58 tumor

7

Fig. 7. Random synthesis of A∗ for p∗ = 0.555 with ten values for p.

Fig. 8. A∗ and Ap∗ for the chaotic attractor obtained by switching the values p1 = 0.535 and p2 = 0.553. (a) Overlapped
phase portraits. (b) Overlapped Poincaré sections with the plane x3 = 0.3. (c) Overlapped histograms.
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Fig. 9. (a) Bifurcation diagram for modified system 4; (b) Stable multiple cycle corresponding to p∗ = 0.05 and scheme
[1p1, 1p2, 1p3, 1p4, 1p5, 1p6, 4p7, 4p8] for PN = {0.015, 0.024, 0.030, 0.037, 0.045, 0.053, 0.060, 0.064}

The PS algorithm can also be applied to more other cancer growth models such as the following
generalization of (1) under drug therapy, with the first equation modified (perturbed) as follows

ẋ1 = x1(1− x1)− x1x2 − 2.5x1x3 − px1, (4)

where px1 is a control (perturbation) of the tumor growth with log-kill effect via drug therapy (see [Pillis
& Radunskaya, 2003] or [Itik et al., 2009]). Now the PS algorithm can be applied to control the cancer
growth through the drug therapy. As can be seen in Figure 9 a, with this modification, the bifurcations
does not reverse direction as for the system (1).

For example if we take PN = {0.015, 0.024, 0.030, 0.037, 0.045, 0.053, 0.060, 0.064} and the scheme
[1p1, 1p2, 1p3, 1p4, 1p5, 1p6, 4p7, 4p8] one can obtain the stable behavior corresponding to p∗ = 0.05 (Figure
9 b).

References

Danca M.-F., Romera M., Pastor G. & Montoya F. [2011] ”Finding Attractors of Continuous-Time Systems
by Parameter Switching,” Nonlinear Dynamics, accepted.

Falconer K. [1990]Fractal Geometry, Mathematical Foundations and Applications (John Wiley & Sons,
Chichester).

Foias C. & Jolly M. S. [1995] ”On the numerical algebraic approximation of global attractors,” Nonlinearity
8, 295-319.

Gatenby R.A. & Maini P.K. [2003] ”Mathematical oncology: Cancer summed up,” Nature 421 (6921), 321.
Harmer G. P., Parrondo J. M. R. & Abbott D. [2000] ”New paradoxical games based on brownian ratchets,”

Physical Review Letters 85, 5226-5229.
Kermack W. O. & McKendrick A. G. [1927] ”A Contribution to the Mathematical Theory of Epidemics.”

Proc. Roy. Soc. Lond. A 115, 700-721.
Itik M. & Banks S. P. [2010] ”Chaos in a three-dimenisioonal cancer model,” Int. J. Bifurcation and Chaos

20 (1), 71–79.
Itik M., Salamci M. U. & Banks S. P. [2009] ”Optimal control of drug therapy in cancer treatment,”

Nonlinear Analysis 71 e1473-e1486.
De Pillis L. G. & Radunskaya A. [2003] ”The dynamics of an optimally controlled tumor model: A case

study,” Mathematical and Computer Modelling 37 (11), 1221-1244.
Roose T., Chapman S.J. & Maini P.K. [2007] ”Mathematical Models of Avascular Tumor Growth,” SIAM

Rev. 49(2), 179-208.




