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In this letter we are concerned with the possibility to approach the existence of solutions to
a class of discontinuous dynamical systems of fractional order. In this purpose, the underlying
initial value problem is transformed into a fractional set-valued problem. Next, the Cellina’s
Theorem is applied leading to a single-valued continuous initial value problem of fractional
order. The existence of solutions is assured by a Péano like theorem for ordinary differential
equations of fractional order.
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Let us consider a general class of autonomous discontinuous dynamical systems of fractional order
modeled by the following Initial Value Problem (IVP)

Dq
∗x = f (x) := g (x) + A s(x) , x(k)(0) = x

(k)
0 (k = 0, 1, . . . , dqe − 1), t ∈ I = [0,∞), (1)

where g : Rn → Rn is a function continuous with respect to the state variable, A = (ai,j)n³n a real constant
matrix and s is a piecewise continuous function given by

s(x) =




sgn(x1)
...

sgn(xn)


 .

q ∈ R+ and Dq
∗ is considered in this letter as being the most utilized differential operator, the Caputo

operator of order q with starting point 0, i.e. (see e.g. [Podlubny, 1999])

Dq
∗u(t) =

1
Γ(dqe − q)

∫ t

0
(t− τ)dqe−q−1u(dqe)(τ)dτ.

Γ : (0,∞) −→ R is the known Euler’s Gamma function and d·e denotes the ceiling function that rounds
up to the next integer. Thus, D

dqe
∗ is the conventional differential operator of order dqe ∈ N.

Remark 1. According to the standard mathematical theory [Stefan et al., 1993, §42], we are forced to give
the initial conditions for the IVP (1) using fractional derivatives of the function f, or these values are
frequently not available. Also, it may not even be clear what their physical meaning is. Therefore, using
the Caputo’s suggested way, the initial conditions may be specified in the classical way, as in IVP (1).
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For the sake of simplicity, we restrict ourselves to the case important for the applications: q ∈ (0, 1)
(however the considerations in this paper can be generalized to arbitrary positive q). Therefore, we deal
with the following form of IVP (1)

Dq
∗x = f (x) := g (x) + A s(x) , x(0) = x0, t ∈ I = [0,∞), (2)

where we have to specify just one condition since it is easily seen that the number of initial conditions that
one needs to specify in order to obtain a unique solution is dqe = 1.

Remark 2. The IVP (1) are enough general to include the great generality of systems: for q = 1 the systems
modeled by the IVP (1) are the known Filippov systems [Filippov, 1988], while for non integer values of q
and A = On×n, the IVP (1) models dynamical systems of fractional order.

The main result of this letter is the following theorem

Theorem 1. The (1) admits at least one solution.

For a better readability of the letter, the proof of this theorem shall be given in several steps.

1. Filippov regularization of the right-hand side
The existence and uniqueness of solutions to discontinuous IVPs are essential for discontinuous dy-

namical systems, because due to the right-hand discontinuity, classical solutions of IVP might not even
exist. To provide the existence, it is necessary to modify the right-hand side of IVP (2). For discontinuous
vector fields, existence and uniqueness of solutions is not guaranteed in general, no matter what notion of
solution is chosen. Also, the classical notion of solution for ordinary differential equations is too restrictive
when considering discontinuous vector fields. A possibility to compass this difficulty is to extend the notion
of differential equation to differential inclusion, problem solved by Filippov using a generalized concept of
solution. Thus, the single valued discontinuous IVP is shifted to the following set-valued one

Dq
∗x ∈ F (x), x(0) = x0, for almost all t ∈ I, (3)

where F : Rn =⇒ Rn is a set-valued vector function defined on the set of all subsets of Rn. One of simplest
definition of F is the following convex form (implicitly used in most introductory references)

F (x) =
⋂

ε>0

⋂

µ (M)=0

conv f ((x + εB)\M) , (4)

where, M is the set of discontinuity points of f , B the unit ball in Rn, µ the Lebesgue measure and
conv the closed convex hull. At the points where the function f is continuous, F (x) will consist of one
point, which is the value of f at this point, i.e. F (x) = {f(x)}. At the discontinuity points, the set F (x)
is given by (4). Therefore, F (x) is the convex hull of values of f (x∗), x∗ ∈ M , ignoring the behavior on
null sets. For example, the Filippov regularization applied to the unidimensional sign function leads to the
set-valued function

Sgn (x) =




{−1} x < 0,
[−1, 1] x = 0,
{+1} x > 0.

and the right-hand side of the IVP (2) becomes

F (x) := g (x) + A S(x), with S(x) = (Sgn(x1), . . . , Sgn(xn))T . (5)

In order to justify the use of the Filippov regularization in physical systems, ε in (4) must be small enough,
so that the motion of the physical system can be arbitrarily close to a certain solution of the differential
inclusion.

2. Continuous approximation of the right-hand side
Next, X and Y denote metric spaces (e.g. Rn as in almost real applications).
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Definition 1. A selection of a given set-valued function F : X =⇒ Y is a function h : X −→ Y satisfying

∀x ∈ X, h(x) ∈ F (x).

Definition 2. A set-valued function F : X −→ Y is called upper semicontinuous (u.s.c.) at x ∈ X if for
any neighborhood V of F (x), there exists a neighborhood U of x such that F (x) ⊂ V for all x ∈ V. F is
u.s.c. on X if it is u.s.c. on every point of X.

For practical reasons, it is convenient to characterize a set-valued map F : X =⇒ Y by its graph

Graph(F ) = {(x, y) ∈ X × Y | y ∈ F (x)}.
Proposition 1. The set-valued function F defined by (4) is u.s.c. with nonempty closed and convex values.

Proof. The proof can be found e.g. in [Aubin & Cellina, 1984, p. 102]. ¥

Remark 3. Due to the symmetric interpretation of a set-valued map as a graph (see e.g. [Aubin &
Frankowska, 1990]) we shall say that a set-valued map satisfies a property if and only if its graph sat-
isfies it. For instance, a set-valued map is said to be convex if and only if its graph is a convex set.

The following known theorem (Cellina’s Theorem or ”Approximative Selection Theorem”) will be a main
tool used in the proof of Theorem 1.

Theorem 2. [Aubin & Cellina, 1984; Aubin & Frankowska, 1990] Let F : X −→ Y be upper u.s.c. set-
valued with Y a Banach space. If the values of F are nonempty and convex then, for every ε > 0, there
exists a locally Lipschity function fε : X −→ Y such that

Graph(fε) ⊂ Graph(F ) + εB.

The proof of Theorem 2 is constructive (see the mentioned reference) in that it provides a method to
explicitly construct the selection fε with ε parameter. This is an important advantage which allows to find
practical approximations in real applications.

3. Existence of the solutions for fractional equations
Let us consider the following IVP of fractional order with q ∈ (0, 1)

Dq
∗x = f(x), x(0) = x0, (6)

with x ∈ Rn. The following existence result corresponds to the classical Péano existence theorem for first
order equations

Theorem 3. [Kai, 2010] Assume f in IVP (6) is continuous and bounded. Then there exists a solution to
IVP (6).

Proof. see [Kai, 2010, Corollary 6.4 p. 92]. ¥

Next we can give

Proof. [Proof of Theorem 1] Applying Filippov regularization, the right hand side of (1) transforms into
the set-valued function F given by (5). F is a convex u.s.c. (Proposition 1) and non-empty valued function
(Remark 3). Therefore, Theorem 2 can be used and the IVP (1) becomes a continuous IVP of fractional
order to which Theorem 3 applies and the proof is complete. ¥

Remark 4. i) Using the Fillipov regularization, the single valued IVP may be considered as transforming
into a set-valued IVP of fractional order. However, for practical purposes, fractional single-valued IVPs are
more accessible by numerical point of view, since there are several ways to approximate their solutions.
ii) The uniqueness for general fractional equations is treated in [Kai, 2010, §6.2] the underlying theorem
corresponding to the well-known Picard- Lindelöf Theorem for equations of integer order and is based on
Lipschitz continuity. However, for our case of systems, the uniqueness is checked since from Theorem 2 the
approximate selection is locally Lipschitz continuous.
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For example, let us consider the following fractional discontinuous variant of the Chua’s system

Dq
∗x1 = −2.57x1 + 9 x2 + 3.87 sgn (x1),

Dq
∗x2 = x1 − x2 + x3,

Dq
∗x3 = −p x2,

(7)

where p is a real parameter. The graph of the first component of the right-hand side of (7), the scalar
function f1 (x1, x2) = −2.57x1 +9 x2 +3.87 sgn (x1) , is plotted in Fig. 1(a). The convex hull of f1 (0, x2) is
the dashed region and represents the graph of the set-valued function F1(0, x2). The underlying set-valued
IVP is

Dq
∗x1 ∈ −2.57x1 + 9 x2 + 3.87 Sgn (x1),

Dq
∗x2 = x1 − x2 + x3,

Dq
∗x3 = −p x2.

(8)

A possible approximation (selection) of F1 in the neighborhood of (0, x2) can be, for example, a smooth
cubic polynomial function h (x1, x2) = ax3

1 + bx2
1 + cx1 + 9x2 [Danca & Codreanu, 2002] where a, b, d

and d have to be determined from the continuity and differentiability conditions in ±ε, x2 ∈ R (Fig. 1(b).
Next, the system can be either numerically integrated using e.g. the fractional Adams–Bashforth–Moulton
method discussed in [Diethelm et al, 2002], or approximated using some frequency-domain method ( see
e.g. [Charef et al, 1992]). More approximations ways for fractional operators can be found e.g. in [Vinagre
et al., 2002].

Fig. 1. a) Graph of F1(0, x2); b) Approximation of F1.
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