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Abstract

In this paper we unveil the existence of hidden chaotic sets in a simplified Hopfield
neural network with three neurons. It is shown that beside two stable cycles, the
system presents hidden chaotic attractors and also hidden chaotic transients which,
after a relatively long life-time, fall into regular motions along the stable cycles.

keyword Hopfield neural network; Hidden chaotic attractor; Hidden chaotic transient;
Limit cycle

1 Introduction

The origin of transient chaos is well known: it is due to nonattracting chaotic saddles in phase
space [1–7]. Transient chaos is a common phenomenon of many engineering, physical and
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biological systems. Compared with chaos, which is characterized as a long-term behavior, the
transient chaos, is a phenomenon which appears when a nonlinear system behaves chaotically
during some transient time interval and the trajectories in a certain region of phase space
behave chaotically for a while, after which falls into a regular motion. These systems may
initially exhibit an aperiodic behavior and sensitivity to initial conditions (i.e. “chaos”) and
after a period of time, it settles down on a periodic orbit or fixed point.

Such phenomena were observed in radio circuits [8], hydrodynamics [9], neural networks
[10], standard models of nonlinear systems such as Rössler system [11], Lorenz system [4,12],
experiments (e.g. synchronization of two unidirectionally coupled Chua circuits [8]), maps
[13], species extinction [14] and so on.

In some applications, the transient chaos can be quite disastrous, as in situations of
voltage collapse or species extinction. Therefore it is often desirable to sustain transient
chaos. Thus, conversion of the transient chaos into sustained chaos can avoid catastrophes
related to sudden chaos collapses, even in the absence of external perturbations (i.e. chaos
anticontrol) [5, 15]. On the other side, in some situations, the chaotic transients are highly
undesirable, so that control techniques are useful (see e.g. the control method known as
“partial control” [16]).

In a recent paper [17] a new phenomenon of transient chaos, doubly transient chaos,
fundamentally different from the hyperbolic and nonhyperbolic transient chaos reported
in the existing literature is revealed. This type of phenomenon appears in many systems
(chemical reactions, binary star behavior, etc.) and it is likely far less predictable than has
been previously thought.

A Neural Network (NN) is a mathematical or computational model inspired by biological
neural networks that consists of interconnected groups of neurons. Without chaotic behavior
neural systems cannot be adequately addressed and fully understood [18]. Neurobiological
chaos, omnipresent in the brain, points out several possible approaches of understanding
how the brain works and this is demonstrably so, in the somatosensory and the olfactory
cortices [19]. Many NNs, such as discrete time NNs, or continuous (time-delayed) NNs, may
behave chaotically. The roles of chaos in this type of systems have been investigated in many
papers in the last years [20–25].

Hopfield Neural Networks (HNN) are constructed from artificial neurons and represent
particular cases of NNs inspired by spin systems [26]. Even if it is not easy to be discovered,
chaos and hyperchaos have been identified in many HNNs [10,27–33].

From the computational perspective point of view, based on the connection of their
basins of attraction with equilibria in the phase space, it is natural to suggest the following
attractors classification

Definition 1. [34–38] An attractor is called a self-excited attractor if its basin of attraction
intersects with any open neighborhood of an equilibrium; otherwise, it is called a hidden
attractor.

Self-excited attractors can be visualized numerically by a standard computational proce-
dure, in which after a transient process, a trajectory starting from a point of a neighborhood
of unstable equilibrium is attracted to the attractor, while the basin of attraction for a hidden
attractor is not connected with any equilibrium. Therefore, for the numerical localization of
hidden attractors it is necessary to develop special analytical-numerical procedures [34,37,39].
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Hidden attractors can appear in systems with no-equilibria or in multistable systems
with only stable equilibrium. Coexisting self-excited attractors in multistable systems can
be found using a standard computational procedure, whereas there is no regular way to
predict the existence or coexistence of hidden attractors in a system (for various examples
of multistable engineering systems refer to [38,40]).

To verify numerically that a chaotic attractor is hidden, one has to check that all tra-
jectories starting in small neighborhoods of unstable equilibria, are not attracted by the
attractor (see e.g. [35,37]).

In this paper we consider the case of a 3-neuron simplified HNN and we unveil, beside
two stable cycles, its hidden chaotic attractors and hidden chaotic transients.

2 The simplified Hopfield neural network

The 3-neuron HNN considered in this paper, is a simplified variant of the simplest example of
a system that “realizes everything”1 and has “maximal dynamic complexity” [42], is modeled
by the following ODEs [10]

ẋi = −xi +
3∑

j=1

wijf(xj), i = 1, 2, 3, (1)

with f(xj) = tanh(xj) and with the weight matrix

W =

w11 w12 w13

w21 w22 w23

w31 w32 w33

 =

 2 −1.2 0
1.9995 1.71 1.15
−4.75 0 1.1

 .

and whose topological connection is presented in Fig. 1.
We show numerically that, beside two stable cycles and hidden chaotic attractors, the

HNN (1) admits a new type of coexisting hidden sets: hidden chaotic transients2.
With the above values of weights, the system (1) reads

ẋ1 =− x1 + 2 tanh(x1)− 1.2 tanh(x2),

ẋ2 =− x2 + 1.9995 tanh(x1) + 1.71 tanh(x2) + 1.15 tanh(x3),

ẋ3 =− x3 − 4.75 tanh(x1) + 1.1 tanh(x3).

(2)

The sigmoid-like function tanh(x), is used to approximate the switch discontinuity in
x = 0, typically to neurons dynamics.

The HNN system (2) is symmetrical with respect to the origin and has the following
equilibria

X∗
0 = (0, 0, 0), X∗

1,2 = ±(0.493, 0.366,−3.267).

1In other words, its dynamics can be determined with an arbitrary accuracy using the parameters on
which it depends [41].

2Transient dynamics of hidden attractors in a 4D system are analyzed in [43].
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The Jacobian is

J =

 1− 2 tanh2(x1) −1.2 + 1.2 tanh2(x2) 0
1.9995− 1.9995 tanh2(x1) 0.71− 1.71 tanh2(x2) 1.15− 1.15 tanh2(x3)
−4.75 + 4.75 tanh2(x1) 0 0.1− 1.1 tanh2(x3)

 ,

and the eigenvalues of X∗
0 are λ1 = 1.942 and λ2,3 = −0.066 ± 1.879i while the eigenvalues

of X∗
1,2 are λ1 = −0.987 and λ2,3 = 0.538 ± 1.286i. Therefore, equilibria are unstable: one

attracting focus saddle, X∗
0 , and two repelling focus saddles X∗

1,2 (ingredients of transients
chaos).

3 Hidden chaotic transients of the Hopfield neural net-

work

The numerical integration of the HNN (2) is realized with the Matlab differential solver
ode45 with option opts = odeset(′RelTol′, 1e − 9,′AbsTol′, 1e − 9) which yields 8 decimals
accurate results3.

In Hopfield like systems it is common to find transients, which are interpreted as being
chaotic (see e.g. [10]). Generally, the duration of these transients is rather short before they
settle down on some periodic stable attractor [6] (in [46] the life-time of hidden chaotic
transient sets of the Rabinovich-Fabrikant system is of order of 160).

We show that, for the considered system, beside hidden chaotic attractors, there are
pairs of coexisting relative long chaotic transients with life-time [0, T ∗], T ∗ > 1000, which,
following Definition 1, can be considered as hidden. Also, there are short transients to two
stable cycles which, due to their short life-time (with generally T ∗ < 500− 700), cannot be
considered chaotic in the usual sense.

The system admits two stable cycles, denoted C1 and C2 (Fig. 2 (a), red and blue
plots respectively). These cycles can be reached, either via two coexisting transient chaotic
trajectories H1,2 starting from initial points situated far from equilibria, e.g. the points
±(1.9, 3, 1) considered in this work (the light red and light blue phase plots in Fig. 2 (a),
and time series plots in Fig. 2 (b)-(d)), or by starting from small δ-vicinity (with δ = 1.5E−4)
of unstable equilibria X∗

0,1,2 (see Fig. 3, where the case of C2 is considered, with the initial
condition (−0.49,−0.36, 3.26) belonging to a small neighborhood of X∗

2 . The case of C1 can
be treated similarly). While in the case of the chaotic transients, H1,2, starting relatively
far to equilibria (points ±(1.9, 3, 1)), a large transient life-time [0, T ∗], with T ∗ = 1000 (Fig.
2 (b)-(d)), is necessary to reach C1,2, for the trajectories starting from δ-vicinity of X∗

0,1,2,
the transients are extremely short, about 1/10 of the life-time of the chaotic transients H1,2

(Fig. 3). Therefore, in this paper, the chaotic transients are the chaotic trajectories with
life-time T ∗ > 1000.

In the spirit of Definition 1, one have to verify that, after very short transients, all
trajectories starting from small neighborhoods of unstable equilibria must be attracted by

3Matlab implicitly uses default values RelTol = .001 and AbsTol = .000001 and the approximate error
at each step ek is ensured to be ek ≤ max(RelTol × xk, AbsTol), for all k, where xk is the value calculated
at the node tk (see e.g. [44] for the used Runge-Kutta and other numerical methods utilized by Matlab).
In [45] it is suggested RelTol = 10−(m+1) for m precise digits of the required solution.

4



the stable cycles C1,2 and not by the chaotic transients H1,2. While trajectories starting from
neighborhoods of e.g. X∗

0 tends either to C1 or C2, because X∗
0 belongs to the separatrix of

the basins of attractions of C1 and C2 (See Fig. 4 (a), where for clarity, only 50 trajectories
are considered), the trajectories starting from neighborhoods of X∗

1 and X∗
2 tends to C1 and

C2 respectively (see Fig. 4 (b) for the case of X∗
2 ).

Remark 2. By improving the numerical approximations (smaller values for RelTol and
AbsTol), it is possible to obtain longer hidden chaotic transients. However, related to the
length of the integration interval, precautions should be considered, since a too large time
interval could lead to inaccurate numerical solutions (see e.g. [47] for the case of Lorenz
system). Moreover, there seems to be a time scale scale in all natural processes beyond which
structural stability and calculability become incompatible [48].

The shape of the trajectories starting within VX∗
0
and VX∗

1,2
are consistent with the equilib-

ria type: the trajectories from vicinities VX∗
1,2

exit by scrolling equilibria X1,2 in the unstable

two-dimensional manifold (Fig. 4 (b)), while the trajectories from the vicinity of X∗
0 leave

VX∗
0
along the one-dimensional unstable manifold of X∗

0 (Fig. 4 (a)).
Since H1,2 can be obtained only from attraction basins situated relatively far from the

equilibria, and trajectories starting from equilibria neighborhoods tend almost directly to
the stable cycles, we can consider the chaotic transients H1,2 as being hidden and C1,2 self-
excited stable limit cycles. Fig. 5, where a δ-vicinity of order of 10−4 is considered, shows
that there exists regions of H1,2 containing initial points wherefrom almost all trajectories
reach H1,2. Time series of the state variable x1 for the considered trajectories (Fig. 6), reveal
initial points generating hidden chaotic trajectories with long life-time (T ∗ > 1000) which
can be considered hidden chaotic transients, but also short transients.

For the numerical localization of hidden attractors, a special analytical-numerical proce-
dure can be found in e.g. [37]. In this paper, for transient hidden sets the following initial
conditions have been found: ±(1.9, 3, 1). The basin of attraction of the chaotic hidden tran-
sient H1 determined in the plane x3 = 1 is presented in Fig. 7 (a). As can be seen, the initial
conditions generating the transient hidden sets (green) are disposed in small shapes located
along oblique strips and form fractal clusters. The remaining area (red) represents the initial
conditions which lead to the stable cycle C1. The zoom of the 1/100 reduced rectangular re-
gion centered in (1.9, 3) in Fig. 7 (b), reveals the selfsimilarity property: any zoomed region
containing initial conditions, reveals new and new initial conditions for hidden transients.

Note that the coexistence of the hidden chaotic transients H1,2 and the stable cycles C1,2,
are ensured by the entrainment of limit cycles by chaos (see [49], where the replication of
sensitivity and the existence of infinitely many unstable periodic solutions were rigorously
proved and [50], where this result is applied in Hopfield systems). Based on this result,
the transient hidden chaotic sets H1,2 differ from the short transients to C1,2 starting from
equilibria neighborhoods.

The following approach is based on the analysis of structural stability introduced by
Andronov and Pontryagin in 1937, which quantifies how the system responds to changes of
the parameters. As known, a flow pattern is qualified as structural stable if small variations
of a parameter do not affect the flow structure in a topological sense. In other words, for
small parameter variations, the new flow is topologically equivalent with the non-perturbed
flow (see e.g. [51, 52]). The results are summarized in the Fig. 8 where w∗ are the values
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of the matrix W . The set of initial parameters data is perturbed around w∗. Thus, every
parameter wij is perturbed, while the rest of the parameters are fixed. With perturbations
of order 10−5, the system changes its dynamics. Thus, for w11, w22, w31 < w̃1

∗, where w̃1
∗ is

a point situated at a small distance of about 10−4 from w∗, the system evolves chaotically
(Fig. 8 (a)). Because the chaotic trajectory seem to last for extremely long life-time (even
for T > 50000), the underlying chaotic set can be considered a chaotic attractor (see e.g. the
time series for the component x1 and the phase plot for w11 = 1.995; for image clarity, only
T = 5000 has been considered). Moreover, due to the modality in which these attractors
have been obtained and due to their characteristics, they are hidden (not self-excited). For
w̃1

∗ < w11, w22, w31 < w∗ the system presents hidden chaotic transients (see Fig. 8 (a)
w11 = 1.9995), while for w11, w22, w31 > w∗ the system pulls the trajectories along the stable
cycles (Fig. 8 (a) w11 = 2.05).

Reversely, while w12, w21, w23, w33 increase their values, the system dynamics change from
regular motions (stable cycles C1,2) to hidden chaotic transients (Fig. 8 (b)). Again, there
exists values of w12, w21, w23, w33, denoted by w̃2

∗, such that for w12, w21, w23, w33 > w̃2
∗, the

system evolves along a hidden chaotic attractor.
Because the parameter perturbations, small compared with the attractors size, put the

system into one of other permissible states, one can consider that the system is unstable
structural.

4 Conclusion

In this paper, following intensive numerical tests, we shown and verified numerically with 8
accurate decimals results, that for the considered parameters value, the HNN (1) presents
hidden transient chaotic sets H1,2 which last for a life-time T ∗ > 1000, while for slightly
modified parameters value, the system changes dynamics and presents either hidden chaotic
attractors or stable cycles. The chaotic transients have a relative long life-time with fractal
attraction basins. Their shape of the hidden chaotic transients seems to be deformed by the
form of the coexisting limit cycles and unstable equilibria. Therefore, H1 and H2 have a
complex structure. So, one may say that the behavior is rather natural here. Since chaotic
behavior in neural activity seems to be unavoidable, chaos control and anticontrol of these
transient hidden chaotic sets are an unexplored theme yet and they offer an exciting subject
for a future research. On the other side, as known, data is often of dubious quality (noisy
and incomplete). It is a matter of fact that noise have a serious impact on real biological
systems. Therefore, a future study of the role of noisy networks [53–55] in dynamics of
transient chaos for the considered HNN would be of interest.
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[16] Capeáns R, Sabuco J, Sanjuán MAF, Yorke, JA. Philos Tr Soc A 2017.
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Figure 1: Topological connection.
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Figure 2: Hidden chaotic transients H1 (light red plot) and H2 (light blue plot) of the
HNN (2) obtained with initial conditions ±(1.9, 3, 1) and stable cycles C1 and C2 (red plot-
ted and blue plot respectively). (a) Phase plots; (b)-(d) Time series for initial condition
(−1.9,−3,−1) revealing the hidden chaotic transient H2 and the stable cycle C2.11



Figure 3: Stable cycle C2 obtained after a short transient (T ∗ ≈ 100) starting from the
neighborhood of X∗

2 (point (−0.49,−0.36, 3.26)). (a)-(c) Phase plane plots. Transients to
C2 are dotted lined; (d)-(f) Time series.
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Figure 4: 50 trajectories starting from neighborhoods VX∗
0
and VX∗

2
of equilibria X∗

0 and
X∗

2 . a) Trajectories from VX∗
0
tend either to C1 (light red), or to C2 (light blue); b) All the

considered 50 trajectories from VX∗
2
tend to the stable cycle C2.
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Figure 5: Ten trajectories starting from neighborhoods of (−1.9,−3,−1).
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Figure 6: Time series of the trajectories in Fig. 5 starting from the neighborhood of
(−1.9,−3,−1).
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Figure 7: Fractal attraction basin of the hidden chaotic transientH1 (green) and of the stable
cycle C1 (red). The zoomed region reveals the selfsimilarity. Both regions are centered on
(1.9, 3).
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Figure 8: Dynamics of the HNN (2) subject to parameters variations (sketch). a) Variations
of parameters w11, w22, w31. For w11, w22, w31 < w̃1

∗ the system presents hidden chaotic at-
tractors; for w̃1

∗ < w11, w22, w31 < w∗, the system presents hidden chaotic transients (green
area), while for w11, w22, w31 > w∗ the system evolves along one stable cycle. The consid-
ered cases represent the three different dynamics corresponding to three different parameter
ranges for the case of the parameter w11 perturbed around w∗ = 2 and with the rest of the
parameters fixed; b) Variations of parameters w12, w21, w23, w33. For w11, w22, w31 < w∗ the
system evolves along one stable cycle; for w∗ < w11, w22, w31 < w̃2

∗, the system presents
hidden chaotic transients (green area), while for w11, w22, w31 > w̃2

∗ the system presents
hidden chaotic attractors.
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