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(Received 10 November 2015; accepted 2 April 2016; published online 15 April 2016)

In this paper, we propose a Parameter Switching (PS) algorithm as a new chaos control method for

the Hastings–Powell (HP) system. The PS algorithm is a convergent scheme that switches the control

parameter within a set of values while the controlled system is numerically integrated. The attractor

obtained with the PS algorithm matches the attractor obtained by integrating the system with the

parameter replaced by the averaged value of the switched parameter values. The switching rule can

be applied periodically or randomly over a set of given values. In this way, every stable cycle of the

HP system can be approximated if its underlying parameter value equalizes the average value of the

switching values. Moreover, the PS algorithm can be viewed as a generalization of Parrondo’s game,

which is applied for the first time to the HP system, by showing that losing strategy can win:

“losingþ losing¼winning.” If “loosing” is replaced with “chaos” and, “winning” with “order” (as

the opposite to “chaos”), then by switching the parameter value in the HP system within two values,

which generate chaotic motions, the PS algorithm can approximate a stable cycle so that

symbolically one can write “chaosþ chaos¼ regular.” Also, by considering a different parameter

control, new complex dynamics of the HP model are revealed. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4946811]

In Refs. 3 and 4, it is shown that the attractors of a chaotic

system, depending on a real parameter, can be numeri-

cally approximated by switching the control parameter

with the Parameter Switching (PS) algorithm in some

deterministic or random manner, while the underlying ini-

tial value problem (IVP) is numerically integrated. In this

way, the obtained attractor approximates the attractor

obtained via the parameter control using the average of

the switched values. If the switching parameter values cor-

respond to chaotic behaviors and the attractor generated

by the PS algorithm is a stable cycle, one obtains a chaos

control-like (similarly one can obtain a chaos anticontrol-

like) schemes. In Ref. 15, it is shown that alternating ran-

domly or deterministically the loosing gains of two games,

one can actually obtain a winning game with a positive

gain; in other words, two ugly parents can have a beauti-

ful child (Zeilberger, when receiving the 1998 Leroy P.

Steele Prize). If one switches, for example, the control pa-

rameter within a set of two values which generate chaotic

behaviors, denoted by chaos1 and chaos2, by choosing a

suitable switching rule, one can obtain a stable cycle

denoted as order. Symbolically, this can be written as

chaos1þ chaos2¼ order, i.e., Parrondo’s paradox variant

to controlling chaos. In this paper, we show that the PS

algorithm can be utilized as a chaos control-like scheme

for the Hastings–Powell (HP) model. Also, we show that

the PS algorithm can be considered as a generalization of

the Parrondo paradox utilized for chaos control in this

same model.

I. INTRODUCTION

The evidence of chaos in real systems has led to the need

for control of chaos, usually by replacing chaotic dynamics

through stability and stable cycles, which is becoming a fasci-

nating subject of research in different fields including especially

ecological systems. To date, many researchers have proposed

how to control chaos in, e.g., food-chain models by incorporat-

ing several biological means. In fact, some biological phenom-

ena such as imposition of a population floor,36,37 addition of

refugia,8 omnivory,17 intraspecific density dependence,48 toxic

inhibition,1 spatial effect,23 cascading migration,38 and predator

feeding switching31 can facilitate the control of chaos.

Since the pioneering works of Lotka et al.21,22 and

Volterra46 that model the oscillations of two-specie preda-

tor–prey populations and present a mechanism for neutrally

stable limit cycles, the field of mathematical ecology has

flourished significantly, which studies ecological models of

interacting populations of different species.

Predator–prey population cycles represent a great deal

of fascination for the scientific world of animal naturists,

becoming a major research subject in ecology since the last

century, with the first important scientific reports in Refs. 9,

26, 40, or 41 (see more references in Ref. 45).

Despite the fact that in some early works the investigators

considered that the systems, or the system parameters, induc-

ing chaos are unrealistic from biological or systems point of

view, Hastings and Powell16 introduced a tritrophic chaotic

model (HP model), which is an extension of the two-variable

Rosenzweig-MacArthur model.34,35 The system describes the

food-chain interaction within an ecosystem of three species with

Type II functional responses. It is an intriguing model which

can be viewed as an approximation for large classes of
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biological systems. They showed that the system possesses

strange attractors. Since their nonlinear multi-trophic model was

introduced, theoretical ecologists started to analyze the subtle

dynamics of these kinds of systems (see, e.g., Refs. 19, 20, 28,

29, 33, and 43, which is an accessible mathematical introduction

of complex dynamics with many biological examples).

The HP system is modeled by the following system:

dX

dT
¼ R0X 1� X=K0ð Þ � C1F1 Xð ÞY;

dY

dT
¼ F1 Xð ÞY � F2 Yð ÞZ � D1Y;

dZ

dT
¼ C2F2 Yð ÞZ � D2Z;

(1)

where

FiðUÞ ¼ AiU=ðBi þ UÞ; i ¼ 1; 2; (2)

represent a Holling type II functional response of both con-

sumer species18 with Bi, which is the half-saturation constant

satisfying FiðUÞjU¼Bi
¼ Ai=2; T represents time; R0 is the

intrinsic growth rate; K0 is the carrying capacity of species

X; constants C�1
1 and C1 are conversion rates of the prey to

predator of species Y and Z, respectively; D1 and D2 are con-

stant death rates for species Y and Z, respectively; constants

A1;2 and B1;2 parameterize the saturation functional response,

and Bi is the prey population level where the predation rate

per prey unit is half of its maximum value. Due to the set of

10 parameters, which imply difficult analysis, the system is

transformed into a nondimensional form by the linear trans-

formation (given in Ref. 16)

x1 ¼
X

K0

; x2 ¼
C1Y

K0

; x3 ¼
C1Z

C2K0
; t ¼ R0T; (3)

yielding the following system with only 6 parameters:

_x1 ¼ x1ð1� x1Þ � g1ðx1Þx2;

_x2 ¼ g1ðx1Þx2 � g2ðx2Þx3 � d1x2;

_x3 ¼ g2ðx2Þx3 � d2x3;

(4)

where g : R! R is a real function of the form

gi xð Þ ¼ aix

1þ bix
:

The original parameters are: a1 ¼ 5; b1 ¼ 5; a2

¼ 0:1; b2 ¼ 2; d1 ¼ 0:4; d2 ¼ 0:01. In the previous papers,

the bifurcation parameter is b1. In this paper, we consider p :
¼ d1 as the control parameter. It should be mentioned that

similar results to those presented in this work are obtained if

d2 is used as the control parameter. We show that the chaotic

behavior appears in regions of the parameter space different

to, e.g., Refs. 16, 27, 49, and 42. Also, the bifurcation dia-

gram (Fig. 1(a)) reveals much richer dynamics than the case

when b1 is used as the bifurcation parameter. A typical stable

periodic motion, whose reverse “tea-cup” shape character-

izes the great majority of HP’s chaotic attractors, is drawn

with tubes in Fig. 2. The colors mark the speed on the trajec-

tory, from the highest (red) to the lowest (yellow).

Since, in realistic cases, it is almost impossible to distin-

guish quasiperiodic from chaotic behavior using only classical

methods of period analysis, one usually use tools like the

correlation dimension or Lyapunov coefficients,47 which is

beyond the scope of this paper. Instead, one can consider that,

besides chaotic motion revealed in the previous works, the HP

system presents periodic, and possibly quasiperiodic oscilla-

tions, often of mixed-mode type, with periodic or nearly peri-

odic oscillations (in Ref. 44, the authors revealed some

quasiperiodic motion, via Poincar�e section). As known, mixed-

mode oscillations, found first in chemical reactions (one of the

most known example being the classic Belousov–Zhabotinsky

reaction25), are oscillations (periodic or not) in which there is

an alternation between oscillations with clearly separated large

and small amplitudes (see, for example, the comprehensive

survey6). These oscillations were noticed for over thirty years

existing in many dynamic systems. We found possible mixed-

mode oscillations in the HP system with q¼ 0.36 (see the phase

plot and time series in Fig. 1(a)). These mixed-mode oscilla-

tions, as indicated by colors in Fig. 2, are typical to Ordinary

Differential Equations (ODE) with slow-fast dynamics.

In the current literature, there are only a few results on

chaos control for this kind of systems (see, e.g., Ref. 11,

where the chaos control is achieved by stabilizing two saddle

orbits via the Ott Grebogi Yorke (OGY) method30).

Recently, we proposed the PS algorithm3 and explored the

possibility of obtaining desired attractors by switching a key

FIG. 1. Bifurcation diagram of the HP system (4). (a) The detail reveals a

mixed motion corresponding to p¼ 0.36; (b) distribution of the attractors.
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control parameter. Using this scheme, we can obtain a stable

cycle of the HP system if the control parameter is switched

within a set of values which generate chaotic motions.

Compared to the known chaos control techniques (such as

the OGY method), which force some unstable periodic orbits

to become stable, the PS algorithm allows to approximate

any real stable cycle (also chaotic attractors) by simple

switching of the control parameter within a chosen set, with-

out influencing the intrinsic complexity of the underlying

system dynamics. Also, contrarily to the known control and

anticontrol algorithms, which modify some unstable periodic

orbits in order to become stable, the PS algorithm allows to

obtain one of the possible motions of the underlying system,

without modifying its properties.

Because the PS algorithm can be applied in a determinis-

tic (periodic) manner3 and also in some random manners,4 we

show in this paper for the first time that the PS algorithm can

be easily implemented for chaos control in the HP model, and

also that it can be used to explain what could happen in some

natural systems (such as the tritrophic food chain HP system)

when periodical or random switchings between chaotic

motions are applied. We show that it can lead to some stable

cycles or, reversely, can explain why switching between

stable periodic evolutions can drive the underlying system to

evolve chaotically.

II. PARAMETER SWITCHING ALGORITHM

Consider a class of systems modeled by the following

Initial Value problem (IVP):

_xðtÞ ¼ f ðxðtÞÞ þ pAxðtÞ; t 2 I ¼ ½0; T�; xð0Þ ¼ x0; (5)

where T> 0, x0 2 Rn; p 2 R is the control parameter,

A 2 LðRnÞ, and f : Rn ! Rn is a nonlinear function. The

IVP (5) models a majority of continuous-time nonlinear and

autonomous dynamical systems depending on a single real

control parameter p, such as the Lorenz system, R€osler system,

Chen system, Lotka–Volterra system, Rabinovich–Fabrikant

system, Hindmarsh–Rose system, L€u system, some classes of

minimal networks, and many others. For the HP system (4),

n¼ 3, and one can choose p¼ d1, with

f ðxÞ ¼
x1ð1� x1Þ � g1ðx1Þx2

g1ðx1Þx2 � g2ðx2Þx3

g2ðx2Þx3 � d2x3

0
@

1
A; A ¼

0 0 0

0 �1 0

0 0 0

0
@

1
A:

The PS algorithm applied to (5) allows to approximate

any desired solution.3 Thus, by choosing a finite set of N> 1

parameters values, PN ¼ fp1; p2; :::; pNg, the PS algorithm

switches the parameter p within PN for a relatively short time

subintervals Ii;j; i ¼ 1; 2; :::;N; j ¼ 1; 2; :::, such that I ¼ [j

[N
i¼1Ii;j, while the underlying IVP is numerically integrated

(Fig. 3). The resulted “switched” solution approximates the

“averaged” solution, which is obtained when the parameter p
is replaced with the average of the switched values, as follows:

p� :¼

XN

i¼1

mipi

XN

i¼1

mi

; (6)

where mi, i ¼ 1; 2; :::;N are some positive integers, and pi

are the weights. The “switching” equation (related to the PS

algorithm) has the following form:

_xðtÞ ¼ f ðxðtÞÞ þ pðtÞAxðtÞ; t 2 I ¼ ½0;T�; xð0Þ ¼ x0; (7)

where p : I ! PN is a piece-wise constant function that

switches its values in the subintervals Ii;j, pðtÞ ¼ pi; t 2 Ii;j;
i 2 f1; 2; :::;Ng; j ¼ 1; 2; ::: (Fig. 3).

For simplicity, hereafter, the index j will be dropped.

The “averaged” equation of (5), obtained for p being

replaced with p� given by (6), is

_�xðtÞ ¼ f ð�xðtÞÞ þ p�A�xðtÞ; t 2 I ¼ ½0; T�; �xð0Þ ¼ �x0: (8)

Throughout, the following assumptions are made.

FIG. 2. Tubular stable cycle of the HP system. Red color indicates highest

speed and yellow color indicates the lowest speed along the attractor.

FIG. 3. p switching for the case of N¼ 3.
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Assumption H1. f satisfies the Lipschitz condition.

Assumption H2. The initial conditions x0 and �x0 of (7)

and (8), respectively, belong to the same basin of attraction

V of the solution of (8).

Then, the global error (difference between the solutions

of (7) and (8)) is given by the following lemma.3,24

Lemma 1 Consider the IVPs (7) and (8). Given any
close initial conditions x0; �x0 2 V, the switched solution
approximates the averaged solution.

The proof is presented in Ref. 24 where the average theory

(see, e.g., Ref. 39) has been utilized, while in Ref. 3, the proof

is made via the global error of Runge–Kutta method.

Next, consider the following reasonable assumption

regarding the notion of attractor utilized and the necessity to

numerically implement the PS algorithm.

Assumption H3. To every p value, for a given initial

condition x0, there corresponds a unique solution and, there-

fore, a single attractor, denoted by Ap, which can be approxi-

mated numerically by its x-limit set,10 after neglecting a

sufficiently long period of transients.

The following theorem represents the main result con-

cerning the PS algorithm applied to systems modeled by the

IVP (5).

Theorem 2 Every attractor of the system (5) can be
numerically approximated by the PS algorithm.

Denote by A� is the “synthesized attractor,” obtained

with the PS algorithm, and by Ap� is the “averaged attractor,”

obtained for p being replaced with p� given by (6).

To obtain a desired attractor corresponding to some

value p, we replace p� with p in (6) and choose a set PN with

the weights mi, i ¼ 1; 2; :::;N, such that (6) is verified. Then,

by applying the PS algorithm, the obtained switched attractor

A� will approximate the searched (averaged) attractor Ap.

Theorem 2 means that by choosing some value p, there

exists the attractor Ap (see Assumption H3) and a set of

N> 1 parameters PN , such that p� ¼ p 2 ðpmin; pmaxÞ with

the weights mi, i ¼ 1; 2; :::;N, and p� given by the relation

(6). Then, as stated by Theorem 2, Ap� will be approximated

by the attractor A�, generated by the PS algorithm.

To numerically implement the PS algorithm, we choose

a numerical method with fixed step-size h to integrate the

IVP (5), a set of switching parameters PN with weights mi,

i ¼ 1; 2; :::;N, and a uniform partition of the time interval

I in the adjacent subintervals Ii, i ¼ 1; 2; :::;N, of lengths mih.

With these ingredients, for a fixed step size h, the PS algo-

rithm can be expressed as

½m1p1;m2p2; :::;mNpN�; (9)

which means that in the first time subinterval I1, for the first m1

steps of length h, the integration is made with p¼ p1. Then, in

the next subinterval I2, for m2 steps, the integration is made with

p¼ p2, and so on, until the last subinterval IN, of length mNh,

where the integration is made with p¼ pN. Next, the algorithm

repeats on another set of N subintervals Ii, i ¼ 1; 2; :::;N, and so

on, until the interval I is entirely covered (see Algorithm 1).

Remark 3

(i) Taking into account of the convexity of the relation
(6) (if one denotes ai ¼ mi=

PN
k¼1 mk, then

PN
i¼1 ai ¼ 1, and

p� ¼
PN

i¼1 aipi), the only necessary condition to approxi-
mate some attractor Ap is to choose PN such that
p 2 ðpmin; pmaxÞ, with pmin ¼ minfPNg and pmax ¼ maxfPNg.
The order of pi in (9) is irrelevant, with pmin ¼ p1 and
pmax ¼ pN .

(ii) The above-mentioned convexity implies a
robustness-like property of the PS algorithm: for every set
PN; A� will be situated “between” the attractors Apmin

and
Apmax

, with the order being induced by the natural order of
the real parameter p (see Fig. 4).

(iii) However, the order of parameter values pi in the
scheme (9) is not important.

The size of h is required only by the convergence of the

underlying numerical method utilized in the PS algorithm,

for example, the standard Runge–Kutta scheme utilized in

this paper. If one considers the simplest case of the scheme

½m1p1;m2p2� with p1;2 belonging to different chaotic win-

dows in the parameter space (visualized in the bifurcation

diagram), there exists at least one periodic stable window

between these chaotic windows. Then, by a suitable choice

of weights m1;2; p� can be localized inside one of these peri-

odic windows (Remark 3 ii), and therefore, the PS acts as a

control-like algorithm. Conversely, if p1;2 are situated in dif-

ferent periodic windows, the weights m1;2 can be chosen

such that p� belongs to a chaotic window and the PS algo-

rithm can be considered as an anticontrol-like algorithm.

This also happens in the general case with N> 2 parameters.

Remark 4 As is known, attractors present continuous
dependence on a parameter which, roughly speaking, means
that the dependence of the solution of the IVP (5) on the pa-
rameter p is continuous as long as the function f is continu-
ous (see, e.g., Ref. 13 or Ref. 32, p. 83). Therefore, contrarily
to reasonable expectations, with relatively small steps size h,
the PS algorithm does not affect the solution continuity.

As shown below, the scheme (9) can be applied periodi-

cally, with the period ðm1 þ m2 þ :::þ mNÞh. For example,

for a given h, the scheme ½2p1; 3p2� means that while the IVP

is integrated with the PS algorithm, one obtains the follow-

ing 5h-periodic parameter sequence: ðp1; p1; p2; p2; p2Þ;
ðp1; p1; p2; p2; p2Þ; :::. Moreover, the scheme (9) can also be

applied randomly. For example, for a random uniformly dis-

tributed sequence of the time subintervals Ii, i ¼ 1; 2; :::;N,

and pi, respectively (see Algorithm 2), the averaged value,

denoted now with �p�, is determined by

FIG. 4. Convexity of the PS algorithm (sketch).
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�p� :¼

XN

i¼1

m0ipi

XN

i¼1

m0i

; (10)

where m0i is the total number of switchings of pi when the

integration ends. On a sufficiently large integration interval

I, due to the uniformly distributed choice of subintervals Ii,

i ¼ 1; 2; :::;N; m0i ¼ nimi, and after a sufficient large integra-

tion steps number ni verify the relations: n1 � n2 � ::: �
nN :¼ n with a small error. Next, due to the convexity

(Remark 3 (iii)), �p� ¼
PN

i¼1
m0ipiP

i¼1
m0i
¼
PN

i¼1
nimipiPN

i¼1
nimi

� n
PN

i¼1
mipi

n
PN

i¼1
mi

¼ p�.

Other random ways to implement the PS algorithm can be

imagined.

The numerical limitations of the PS algorithm reside

mainly in the computational errors (truncation error, round-

ing error, size of h, and p rational nonterminating number).

For example, the detailed D in Figs. 5 and 7 reveals some

relatively larger differences between the two attractors.

These may be due to the utilized numerical scheme, but also

due to the system dynamics. As can be seen in Fig. 2, there

are some peaks where the system speed along the trajectory

is a few times lower than that on the straight portions. Also,

larger values of mi can lead to some differences between the

averaged attractor and the synthesized attractor. For exam-

ple, if the values of mi are too large, the averaged attractor

presents, within the underlying short periods of time Ii;j,

the tendency to converge towards the attractor for the corre-

sponding pi.
5

III. FINDING STABLE CYCLES OF THE HP SYSTEM

In this section, we apply the PS algorithm to ap-

proximate some representative stable cycles of the HP

system (4). To facilitate the choice of the parameters,

the bifurcation diagram is utilized (see Fig. 1(b), where

the considered p values are plotted). The numerical

method used here to solve the system is the standard

Runge–Kutta (written in Matlab language by the follow-

ing Algorithms 1 and 2). The randomness is based on

the pseudorandomness of the Matlab functions. Because

competitions between populations occur on a larger time

scale, the integration interval I has been chosen in the

order of 1E3. However, though it is known that, if the

solution is unique (due to the Lipschitz condition), then

the solution is computable over its lifespan (the maximal

interval on which the solution exists), an accurate long-

time solution remains to be a challenge for the classical

numerical methods (see, e.g., Refs. 2 and 12). A practi-

cal way of considering the validity of the numerical

results for a given system, such as the HP system, is to

use at least two different methods to solve the same

problem. If the two solutions agree, then we can have

some confidence about the computed solutions. Here,

the results obtained with the standard Runge–Kutta

method have been confronted successfully with the

implemented Matlab routines for ODEs. Transients have

been removed. In all the simulations, both attractors A�

and Ap� are overplotted to underline the perfect match

between the searched attractor Ap� and the approximat-

ing attractor A�. The match between A� (blue plot) and

Ap� (red plot) is emphasized by phase overplots, time se-

ries, or Poincar�e section.

Periodic scheme (Algorithm 1)

(1) Suppose one wants to obtain the stable cycle correspond-

ing to p¼ 0.445 (close to a reverse period-doubling

point) with N¼ 2 and the alternation between p1 and p2

given by the scheme ½1p1; 1p2� with p1 ¼ 0:44 and

p2 ¼ 0:45. p1 and p2 are chosen such that p 2 ðp1; p2Þ
(see Remark 3 i) satisfying (6). In this case, the average

attractor to be approximated is Ap� with p� ¼ ð1� 0:44

þ1� 0:45Þ=ð1þ 1Þ ¼ 0:445, which will be approxi-

mated by A� obtained with the PS algorithm (Fig. 5(a)).

The match between the two attractors is revealed by the

time series (Figs. 5(d)–5(f)). Even though the attractors

FIG. 5. Stable cycle in the HP system corresponding to p¼ 0.445 obtained

with the scheme ½1p1; 1p2�; p1 ¼ 0:44, and p2 ¼ 0:45; (a) phase overplots of

A� and Ap� , for p� ¼ 0:445; (b) attractor A0:44; (c) attractor A0:45; (d)–(f)

overplotted time series of A� and Ap� .

043106-5 M.-F. Danca and J. Chattopadhyay Chaos 26, 043106 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  86.106.53.38 On: Fri, 15 Apr 2016

13:53:37



A0:44 and A0:45 are chaotic (Figs. 5(b) and 5(c)), the

obtained attractor, A0:445, represents a stable cycle.

(2) The same stable motion can be obtained, for example,

using a set P with N¼ 5. If one chooses P5 ¼ f0:42;
0:425; 0:435; 0:45; 0:455g, a possible set of weights nec-

essary to give p¼ 0.445 are m1 ¼ m2 ¼ m3 ¼ 1; m4 ¼ 3

and m5 ¼ 4, then by the scheme ½1p1; 1p2; 1p3; 3p4; 4p5�,
the PS algorithm will approximate the same stable cycle

A0:445 (Fig. 6(a)).

(3) To obtain stable periodic motions with higher periods,

for example, to the periodic window around p¼ 0.43

(Fig. 1(b)), it is possible to approximate the stable cycle

corresponding to p¼ 0.432. A choice is the scheme

½1p1; 1p2� with p1 ¼ 0:425 and p2 ¼ 0:439, values which

yield p ¼ p� ¼ 0:432.

The synthesized and averaged attractors match very well

(Fig. 6(b)).

(4) Chaotic attractors can also be obtained. For example, to

approximate the chaotic attractor corresponding to

p¼ 0.45, by switching N¼ 2 values, one can use the

scheme ½2p1; 1p2� with p1 ¼ 0:445 and p2 ¼ 0:46 (see

Fig. 1(b)). Due to the asymptotical characteristic of cha-

otic attractors, the approximation gives weaker results.

FIG. 6. (a) Stable cycle corresponding

to p¼ 0.445, obtained with the scheme

½1p1; 1p2; 1p3; 3p4; 4p5�, and P5¼
f0:42;0:425;0:435;0:45;0:455g; phase

overplots of A� and Ap� ; (b) stable

cycle with a higher period correspond-

ing to p¼0.432, obtained with the

scheme ½1p1;1p2�; p1¼0:425, and p2

¼0:432; (c) chaotic attractor corre-

sponding to p¼0.45 obtained with the

scheme ½2p1;1p2�; p1¼0:445, and p2

¼0:46; phase overplots; (d) Poincar�e
section with the plane x1¼0:72 of

the overplotted chaotic attractors in

Fig. 6(c); (e) stable cycle correspond-

ing to p¼0.4525 obtained with the

scheme ½1p1;1p2�; p1¼0:446, and p2¼
0:459 (phase overplots); (f) the stable

cycle A0:446; (g) the stable cycle A0:459.
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However, the phase plots (Fig. 6(c)) and the Poincar�e
section with x1 ¼ 0:72 show a good match, A� and Ap�,
evolving basically on the same shape (see Fig. 6(d),

where the attractors A� and Ap� are plotted by dotted

curves to reveal the intersection points).

(5) To obtain some stable cycle, the switchings can be done

using stable cycles. For example, to force the system to

evolve on the stable limit cycle corresponding to

p¼ 0.4525 (see Figs. 1(b) and 6(e)), one can apply the

scheme ½1p1; 1p2�, with p1 ¼ 0:446 and p2 ¼ 0:459,

which belong to two different periodic windows (Figs.

6(f) and 6(g)).

Random scheme (Algorithm 2)

(6) One can randomly apply the scheme ½1p1; 1p2; 1p3;
3p4; 4p5�, with P5 ¼ f0:42; 0:425; 0:435; 0:45; 0:455g
(see Fig. 1(b)), to obtain the stable cycle corresponding

to p¼ 0.445, as above. For this purpose, one can choose

randomly, for example, in the order of subintervals Ii,

i ¼ 1; 2; :::; 5, where the PS algorithm is applied. For this

purpose, the simplest way is to use a pseudorandom

number generator function (for example, Matlab’s func-

tion randi). The result (stable cycle) can be seen in Fig.

7(a). Now, the relatively small difference between the

two attractors in the region D is more accentuated than

that using the periodic PS algorithm (Fig. 5(d)).

(7) However, as expected, not even random scheme is chaos

control-like algorithm. For example, suppose the system

evolves under uniformly random switching of p within

the same set P5. After 5E6 iterations, the occurrences of

pi, i ¼ 1; 2; :::; 5, were m01 ¼ 1000568; m02 ¼ 999369;
m03 ¼ 1000343; m04 ¼ 1000372, and m05 ¼ 999348. With

these values, the relation (10) gives (with eight signifi-

cant decimals) �p� ¼ 0:4370019, corresponding to a cha-

otic motion presented in Fig. 7(b), but not to a stable

cycle as before.

(8) Another possibly real situation is that the system suffers

random switching of the values of p, in some limited inter-

val. Consider p taking random values within an interval

including the periodic window around p¼ 0.43 (Fig. 1(b)).

For this purpose, consider p ¼ 0:425þ rand=100, which

FIG. 7. Random application of the PS

algorithm; (a) stable cycle correspond-

ing to p¼ 0.445, obtained with the

scheme ½1p1; 1p2; 1p3; 3p4; 4p5�; P5 ¼
f0:42; 0:425; 0:435; 0:45; 0:455g; the

subintervals Ii; i ¼ 1; 2; :::; 5, with

order chosen randomly (phase over-

plots); (b) chaotic attractor A� obtained

by switching randomly the order of the

values of P5 ¼ f0:42; 0:425; 0:435;
0:45; 0:455g (phase overplots); (c) cha-

otic attractor obtained by randomly

choosing p within the interval ð0:425;
0:435Þ.

043106-7 M.-F. Danca and J. Chattopadhyay Chaos 26, 043106 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  86.106.53.38 On: Fri, 15 Apr 2016

13:53:37



generates pseudorandom numbers p 2 ð0:425; 0:435Þ.
After 5E5 iterations, one obtains a stable cycle with

multiple periods (Fig. 7(c)). Even in this case, due to the

difficulty in counting the number of occurrences for each p

(weights), it is difficult to find �p�. However, due to the

convexity property (Remark 3 i), the obtained attractor is

one of the real system motions. This example illustrates

the robustness-like property of the PS algorithm: for what-

ever set PN and weights mi, the PS algorithm leads to one

of the existing attractors (Remark 3 ii).

Parrondo’s game applied to the HP system
Let us now consider the counter-intuitive behavior of

the game of chance, known as Parrondo’s game, or

Parrondo’s paradox (see, e.g., 15 and 14) (John von

Neumann was one of the first mathematicians who proved

that there are some kind of games involving bluffing, for

which one can have optimal strategies to guarantee the best

outcome. Von Neumann’s work showed these kinds of

games to be applicable, for example, in social behavior, in

economics as well in ecology.) in the following form:

losingþ losing¼winning. This means that, by alternating

two losing strategies in a deterministic way, a winning game

can be obtained.14,15 If one replaces losing by chaos and win-
ning by order, then the following variant of Parrondo’s game

is obtained: chaos1 þ chaos2 ¼ order, i.e., a chaos control-

like behavior. Generalizing, one obtains the following form

of chaos control-like result, which, written in Parrondian

words, reads chaos1 þ chaos2 þ :::þ chaosN ¼ order.3 The

anticontrol-like algorithm implemented with the PS algo-

rithm can be written as follows: order1 þ order2 þ :::þ
orderN ¼ chaos (by chaosi or orderi, one understands a cha-

otic or a stable periodic behavior, respectively, correspond-

ing to some value pi). Therefore, the examples (1)–(4) can be

characterized in Parrondian’s terminology as summarized in

Table I.

IV. DISCUSSION

In the present work, we consider the Hastings–Powell

model and chose the rate of natural mortality of the middle

predator as the control parameter. In the real-world situation,

it is not always possible to attain some specific values of the

rate parameter and the corresponding dynamics of the system.

Therefore, suppose one intends to force the system to evolve

along the attractor corresponding to some inaccessible value

p�, but has access to a set of N parameter values (from experi-

mental/field results) PN , such as p� 2 ðpmin; pmaxÞ, with

pmin ¼ minfPNg and pmax ¼ maxfPNg. Then, using the PS

algorithm, one can approximate the attractor corresponding to

any intermediary value p� between pmin and pmax. It is worthy

noting here that if the frequency of the oscillations in prey–

middle predator interaction and the frequency of the oscilla-

tions in middle predator–top predator interaction are commen-

surate, then the HP three-species system shows periodic

oscillations. Moreover, when such frequencies are incommen-

surate, chaotic oscillations have been observed. Therefore, the

averaged solutions become stable cycles or chaotic cycles

depending on the frequencies of the oscillations correspond-

ing to the switched parameter values. In ecological context,

stable dynamics (stable steady states or stable cycles) are de-

sirable, as chaotic populations are prone to extinction sub-

jected to stochastic fluctuations. Therefore, the outcomes of

the present work are very important and useful even from a

management science perspective.

The rate of convergence of PS algorithm could be

related to the negative Lyapunov exponents at this point in

phase space, which can be calculated from the method in

Ref. 7. In this way, the difference between the actual attrac-

tor and the averaged attractor could be related to the mi’s and

the negative Lyapunov exponents. A future task will be to

study the convergence of the PS algorithm in the case when

P contains infinitely many elements.
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