Matlab code for Lyapunov exponents of fractional-order systems,
Part 1I: The non-commensurate case

MARIUS-F. DANCA
Romanian Institute od Science and Technology,
400487 Cluj-Napoca, Romania,
danca@rist.ro

Received (to be inserted by publisher)

In this paper, the Benettin-Wolf algorithm for determining all Lyapunov exponents of non-
commensurate fractional-order systems modeled by Caputo's derivative and the corresponding
Matlab code are presented. The paper continues the work started in [Danca & Kuznetsov, 2018],
where the Matlab code of commensurate fractional-order systems is given. To integrate the ex-
tended systems, the Adams-Bashforth-Moulton scheme for fractional differential equations is
utilized. Like the Matlab program for commensurate-order systems, the program presented in
this paper prints and plots all Lyapunov exponents as function of time. The program can be
simply adapted to plot the evolution of the Lyapunov exponents as a function of orders, or a func-
tion of a bifurcation parameter. A special attention is paid to the periodicity of fractional-order
systems and its influences. The case of non-commensurate the Lorenz system is demonstrated.
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1. Introduction

Despite the fact that there are opinions and re-
sults questioning the utility of Lyapunov Exponents
(LEs)(see e.g. [Cvitanovi¢ et al., 2016], where the
evaluation of the LEs is not recommended: “Com-
pute stability exponents and the associated covari-
ant vectors instead. Cost less and gets you more in-
sight. ... we are doubtful of their utility as means
of predicting any observables of physical signifi-
cance”), determining numerically LEs remains the
subject of many works growing into a real software
industry for modern nonlinear physics (see, e.g.
[Hegger et al., 1999; Barreira & Pesin, 2001; Skokos,
2010; Czornik et al., 2013; Pikovsky & Politi, 2016;
Vallejo & Sanjuan, 2019] and others).

In numerical calculations of the LEs, the asymp-
totic time averaging is usually accomplished by us-
ing a sufficiently long time to allow the average of
the exponents to converge within a set tolerance.

Although less frequently used, probability densities
(distributions) of the exponents, averaged over a
much shorter time, also contain valuable dynamic
information. Such distributions are made up of the
so-called finite-time or local LEs [Ott, 1993; Prasad
& Ramaswamy, 1999] (see also [Botha, 2016]).

The global Lyapunov exponent can measure the
time-averaged divergence of nearby trajectories on
a strange attractor, revealing an exponential diver-
gence (in the case of positive exponents) or conver-
gence (in the case of negative exponents) [Eckmann
& Ruelle, 1985; Wolf et al., 1985b]. The largest Lya-
punov exponent gives a rough estimate of the pre-
dictability limit [Huai et al.,, 2017]. On the other
side, numerically there often exists a strong interest
in the local predictability. In ergodic systems, most
trajectories will asymptotically yield to the same
LE. If trajectories are considered for short times
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only, then the mean separation rate will depend on
the trajectories and also the length of the time inter-
val [Grassberger et al.,, 1988; Eckardt & Yao, 1993].
Since finite time LEs can be obtained as integrals of
the local separation rate along the trajectory, they
are also called local LEs [Eckardt & Yao, 1993]. Ap-
proaches for the LEs computation and their differ-
ences are discussed, e.g., in [Kuznetsov et al., 2016,
2018a].

Nowadays, there are two widely used definitions
of the LEs: via the exponential growth rates of
norms of the fundamental matrix columns [Lya-
punov, 1892] and via the exponential growth rates
of the sigular values of the fundamental matrix [Os-
eledets, 1968|.

Applying the statistical physics approach and as-
suming the ergodicity (see, e.g. [Oseledets, 1968]),
LEs of a given dynamical system are often estimated
by local LEs along a “typical” trajectory. However,
in numerical experiments, the rigorous use of the
ergodic theory is a challenging task (see, e.g. [Cvi-
tanovi¢ et al., 2016, p.118]).

Since in numerical experiments only the finite time
LEs can be computed, they can differ significantly
from the limit values, such as in the case where the
considered trajectory belongs to a transient chaotic
set. Therefore, it is remarkable that these character-
istic quantities are reliable to only a few decimals.

Although the subject of fractional derivative is three
centuries old as the conventional integer-order cal-
culus, is the use of this kind of operators mainly
started recently (see e.g. [Caputo, 1967]). Nowa-
days, differential or difference equations of FO rep-
resent useful models in mechatronics, viscoelastic-
ity, seismology, electrical circuits, aerodynamics,
biophysics, biology, blood flow phenomena, chem-
istry, control theory, etc. (see, e.g., [Machado et al.,,
2010] or references in [Tavazoei, 2010]).

Analytical solutions for fractional differentiation
problems are very limited. Due to this reason, re-
cently many numerical approximations of solutions
to fractional equations were proposed (see e.g. [Di-
ethelm et al., 2002]).

On the other side, a recent result opened a lot of
questions on the applicability of fractional differen-
tial operators: nonexistence of exact non-constant
periodic solutions of autonomous nonlinear dynam-
ical systems of FO, proved by Tavazoei and Haeri
in 2009 [Tavazoei & Haeri, 2009]. Once this result
appeared, a lot of related works have been pub-
lished (see for example [Area et al.,, 2014; Yazdani
& Salarieh, 2011; Kang et al.,, 2015]). The impact

of this result in the applications of Fractional Or-
der (FO) systems seems to be more important than
his influence in the theory of FO systems. There-
fore, while the number of theoretic results on this
subject continues to born, non-periodicity affect the
rightness of many applicative works on FO systems,
appeared after this result.

Therefore, until some analytical modality to over-
come this problem appears, in this paper a possible
way to avoid this problem of non-periodicity is de-
scribed.

2. On the periodicity of numerical
solutions of fractional-order
systems

As mentioned in Introduction, one of the most im-
portant property of nonlinear systems, periodicity,
is impossible in FO systems, discrete or continuous.
Consider the Initial Value Problem (IVP) of (non-
commensurate or commensurate) of FO, with Ca-
puto’s derivative:

Diz(t) = f(z(t)),

_ (1)

z(0) = =o,
for t € [0,7], ¢ € (0,1), f : R® — R" and D{, Ca-
puto’s differential operator of order ¢ with starting
point 0:

1 t iy
g €D

with I' being the Euler function.

Properties of Caputo’s differential operator, D,
can be found in e.g. [Podlubny, 1999; Gorenflo &
Mainardi, 1997].

Lemma 1. [Tavazoei & Haeri, 2009] Systems mod-
eled by the IVP (1) can not have any non-constant
periodic solution.

Dz (t) =

This result is based on the result which states
that for ¢ € (0,1), Caputo’s derivative of a non-
constant T-periodic function cannot be T-periodic
(as for Lemma 1, the result has been proved also for
Grunwald-Letnikov and Riemann-Liouville deriva-
tives) and is due to the fact that the entire past
history of the system has to be taken into account.
An extended result of Lemma 1 is the following the-
orem

Theorem 1. [Yazdani & Salarieh, 2011] Systems
modeled by the IVP (1) does not have any periodic
solution unless the lower terminal of the derivative
18 —00.
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Therefore, just the fractional systems with the lower
terminal of —oo could have periodic solutions. To
understand better Lemma 1, revisit the example of
Caputo’s derivative of the periodic sine function,
whose Caputo’s derivative for ¢ € (0, 1) is not peri-
odic (In [Tavazoei, 2010], the example is introduced
via Riemann-Liuville derivative).

Disin(t) =t~ Epp—y(—t7),

where FE,(z) is the two-parameter function of
Mittag-Leffler [Chen & Podlubny, 2009; Podlubny,
1999

o0 Zk;

Ba(2) ;;o T(ak +b)
Although sine is a periodic function, its fractional
derivative, DIsin(t), is not, compared with the
integer-order derivative, when %sin(t) = cos(t),
which is periodic. In Fig. 1 (a), the function
t179Fy 5_,(—t?) for 4 values of ¢ is presented. The
circled regions show that except the case ¢ = 1 when
the function t179F55_,(—t%) becomes the periodic
function cos(t) ([Podlubny, 1999] Theorem 1.7), for
q € {0.1,0.4,0.7} the underlying graphs are not
periodic. However, because usually first transients
have to be removed, the best way to show numer-
ically the aperiodicity of Dfsin(t) for larger values
of t (as necessary for, e.g., stable cycles), is to cal-
culate the autocorrelation which, for non-periodic
time series (signals), decreases to zero for relatively
large values of time (see Fig. 1 (b) for ¢ = 0.4).
Another interesting result refers to the special case
of asymptotic stability, namely the finite-time sta-
bility of FO systems. The equilibrium = = z* of
system (1) is said to be (locally) finite-time stable
if it is stable and, for the trajectory x(t) starting
from x( located in a neighborhood of x*, there ex-
ists a time instant 7' > 0, such that z(t) = «* for
allt >T.

Theorem 2. [Shen & Lam, 2014] If x = x* is an
equilibrium of the IVP (1), then x = x* cannot be
finite-time stable.

Some of the practical implications of above results
are clearly underlined in [Tavazoei & Haeri, 2009]:
“Can the controller tuning methods or identification
methods, which use limit cycle information, be ex-
tended for use in the control or identification of FO
systems? As another example, let us consider the
issue of modeling. We know that differential equa-
tions OF fo (FDEs) have been effectively used in the

modeling of real-world systems. According to the re-
sult presented in this note, which model structure
should be preferred for modeling an oscillatory sys-
tem, an 10 or a FO? Are Caputo based FDESs, which
do not have periodic solutions, good candidates to
model oscillatory systems? Let us give another ex-
ample. Stabilization of unstable periodic orbits as
a control objective is a way to suppress the chaotic
oscillations in 1O chaotic systems. To achieve this
goal, many control techniques have been proposed,
such as the OGY method or the Pyragas method,
which can reduce the chaotic oscillations to regular
oscillations. Now, this question may be struck. How
to reduce the chaotic oscillations to regular oscil-
lations in chaotic FO systems, while we know that
FO chaotic systems do not have periodic orbits? An-
other related question is about the dynamical anal-
ysis of FO chaotic systems. It has been found that
unstable periodic orbits play an important role in
understanding the complex behavior of 10 chaotic
systems. However, how do we understand and an-
alyze the behavior of fractional order chaotic sys-
tems, while there exists no periodic orbit in these
systems?”

Also, other problems regard: a) bifurcation dia-
grams where, beside chaotic windows, periodic win-
dows can appear; b) many chaotic attractors in FO
systems, embedding the set of unstable periodic tra-
jectories which form a dense set; ¢) Hopf theorem
which implies limit cycles; d) synchronization of
chaotic FO systems, with chaos containing unsta-
ble periodic trajectories; e) finite-time synchroniza-
tion of fractional-order chaotic systems via terminal
sliding mode control based on periodic motions.
Considering the above results, it is clear that FO
systems can have only asymptotically non-constant
periodic solution and, moreover, to our knowledge
nothing is known about the stability of this kind of
solutions.

One over the other, many phenomena and real sys-
tems are not strictly periodic and, before a rigorous
theoretical answer to the above open problems will
appear, in order to overcome this obstacle, consider
the following definition.

Definition 2.1. In the n-dimensional phase space
R", with n > 2, a numerically periodic trajectory
(NPT) refers to as a closed trajectory in the numer-
ically sense that, after transients are removed, the
closing error € is within a given bound of 1E — m,
with m being a sufficiently large positive integer
(see the sketch in Fig. 2).
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For convenience, we assume from now on that even
no results on the stability of asymptotically peri-
odic FO orbits are known, NPTs can be considered
as good candidates for numerical approaches.

3. Matlab code for Lyapunov
exponents

The following result provide the existence of the
LEs of the FO system modeled by the IVP (1) [Li
et al., 2010]

Theorem 3. System (1) has the following varia-
tional equations, which define the LEs:

Di®(t) = D, f(x)®(t),
DIR) + Def (o)l @)

where ® is the matriz solution of system (1), D, is
the Jacobian of f and I is the identity matrix.

The utilized algorithm for all LEs of FO systems,
has been proposed in the seminal works of Benet-
tin et al. [Benettin et al., 1980] (see also [Shimada
& Nagashima, 1979]), one of the first work to pro-
pose a Gram-Schmidt orthogonalization procedure
to compute LEs for continuous systems of 10, as de-
scribed in [Eckmann & Ruelle, 1985]), and by Wolf
et al. [Wolf et al., 1985b] (see also [Eckmann et al.,
1987]). While in the previous paper, the Matlab
code to determine the LEs is based on the PECE
numerical ABM, for integration of the IVP (1) of
commensurate order [Diethelm et al., 2002] now,
the numerical integrator is the same method, but
for non-commensurate order.

The algorithm to find all LEs of Integer Order (10)
from a time series, is described as a Fortran code
and later as a Matlab code (see [Wolf et al., 1985b)]
and [Wolf, 2021], respectively).

The program presented in this paper uses the
skeleton of the Matlab code presented in [Danca
& Kuznetsov, 2018], based on the program lya-
punov.m (see [Govorukhin, 2004]).

While in [Danca & Kuznetsov, 2018], the required
numerical integration of the commensurate order
system uses a numerical method for FDEs of com-
mensurate order, in this paper the algorithm re-
mains basically similar. But, instead of a numerical
method for FDEs of commensurate-order, a numer-
ical method for FDEs of non-commensurate order is
utilized. Note that for both commensurate and non-

commensurate order cases, any other fast method to
integrate the IVP (1) can be used.

Because numerical integration of the IVP (1) is
time consuming, it is preferable to employ improved
numerical code, like the FDE12 used in [Danca
& Kuznetsov, 2018]. In this paper, the program
fde_pil2 pc.m [Garrappa, 2017] (see also [Gar-
rappa, 2017]) is used.

The code for FO LEs of non-commensurate order,
called FO_nc_Lyapunov.m (see Appendix A where,
for speed, starred lines can be put as comment),
uses a similar code for commensurate order, the
file containing the extended system, ext_fcn.m,
and a solver for non-commensurate FDEs (here,
fde_pil2_pc.m). All files must be in the same folder.
The running command of FO_nc_Lyapunov.m is

[t,LE]=FO_NC_Lyapunov(ne,ext_fcn,t_start,h_norm,
t_end,x_start,h,q,out);

where

— ne represents the equations (and state variables)
number;

— ext_fcn.m the function containing the extended
system;

— t_start and t_end the time span;

— h.norm the normalization step in the Gram-
Schmidt algorithm;

— x_start the initial condition;

— h the integration step size;

— 9=[qa1,92,--,Gne], and

— out indicates the number of h_norm steps when
intermediate values of time and LEs are printed
(for out=0, no intermediate results will be
printed out).

Consider the Lorenz system of noN-commensurate
order:

1
D'z = a(xg — x1),

2
Dz To = l‘l(b — xg) — X9,
DExs = x129 — cx3,

with b variable, a = 10, ¢ = %, the FO ¢ =
[q1,q2,q3] = [0.995,0.992,0.996] and the extended
function, Lorenz_ext.m, presented in Appendix B.
For b = 23, one of the two equilibria
(£/c(b—1),4+/c(b—1),b—1), (7.659, 7.659, 22.000),
attracts the trajectory starting from the initial con-
dition x_start=[1,1,1] (Fig. 3 (a)).!

!The use of the code can be simplified so that the parameter (here b) be set from the command line of FO_nc_Lyapunov (see

[Danca & Kuznetsov, 2018]).
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The LEs are obtained with the command

[t,LE]=FO_NC_Lyapunov(3,@Lorenz_ext,0,0.1,1000, ...
[1,1,1]1°,0.01,[0.995,0.992,0.996],1000)

and are presented in Table 1 with the time-evolution
in Fig. 3 (b).

100.00 -0.0637 -0.0962 -13.6300
200.00 -0.0679 -0.0861 -13.6367
300.00 -0.0705 -0.0816 -13.6389
400.00 -0.0711 -0.0800 -13.6400
500.00 -0.0718 -0.0787 -13.6407
600.00 -0.0722 -0.0779 -13.6412
700.00 -0.0724 -0.0774 -13.6415
800.00 -0.0727 -0.0769 -13.6417
900.00 -0.0727 -0.0767 -13.6419
1000.00 -0.0730 -0.0763 -13.6421

Table 1. LEs of the Lorenz system (3) for b = 23
(last blue line).

For b = 28, the system evolves chaoticALLY (Fig. 4
(a)) and the LEs are given in Table 2 with the time
evolution in Fig. 4 (b).

100.00 0.7637 0.0026 -14.5118
200.00 0.8306 0.0022 -14.5751
300.00 0.8650 0.0033 -14.6086
400.00 0.8854 -0.0022 -14.6226
500.00 0.8801 0.0042 -14.6238
600.00 0.8811 0.0024 -14.6233
700.00 0.8861 0.0007 -14.6264
800.00 0.8918 0.0010 -14.6320
900.00 0.8961 -0.0008 -14.6344
1000.00 0.8956 0.0006 -14.6352

Table 2. LEs of the Lorenz system (3) for b = 28
(last blue line).

Considering the results and comments in Section 2,
the above results should be considered in the spirit
of Definition 2.1. Thus, for b = 23, the negativeness
of LEs would indicate the existence of a NPT.
Note that because of the numerically approximation
of the NPTs, beside the errors typically due to nu-
merically algorithms for LEs, it is possible to have
supplementary errors.

Remark 3.1. With minor modifications, the code
can be used to plot the evolution of LEs vs some
system parameter or vs q (see FO_Lyapunov_p.m,
run FO_Lyapunov_p.m, and FO_Lyapunov_q.m,
run FO_Lyapunov_q.m, respectively, in [Danca &
Kuznetsov, 2018]).

As mentioned in [Danca & Kuznetsov, 2018], the
main steps to determine numerically the LEs are:
numerical integration of the FO system (1) together

with the variational system (2) (i.e. the extended
system), and the correlation between h_norm of the
Gram-Schmidt procedure and h of the numerical
integration. Thus, beside initial conditions, one of
the most important parameters is h_norm and also
its relation with h (Fig. 5). Thus, while the role of
initial conditions especially in the case of chaotic
behavior, when LEs present a strong sensitivity de-
pendence on initial conditions, is well known and
studied, the influence of the size of h_norm, not only
for the FO case but also in the IO case, is not well
established from the numerical point of view. Obvi-
ously, correct results can be obtained only if h_norm
is multiple of h, but several tests with different (h,
h norm ) have to be tried for a specific system until
the obtained LEs present an invariance-like result
with h and h_norm.

Conclusion and discussion

In this paper, the Matlab code for determining nu-
merically the LEs of a class of dynamical systems
of non-commensurate order is presented. The paper
continues the previous paper [Danca & Kuznetsov,
2018], where the case of commensurate order is an-
alyzed. The code is designed by modifying the Mat-
lab code presented in [Danca & Kuznetsov, 2018].
A fast Matlab code to integrate non-commensurate
FO systems is utilized. However, any other fast rou-
tines can be tried to integrate the extended system.
A special attention should be paid to the relation
between h,orm of the Gram-Schmidt orthogonal-
ization and the step h of the integration routine.
Without some general rule found, we suggest the
relation h norm=kx h with k being some positive
integer, e.g. kK = 10, but with values of these two
parameters adequately chosen for every system.
Regarding the significance of LEs, note that the
simple interpretation of positiveness as a sufficiency
criteria for chaos is not always true. For exam-
ple, in systems of 10 with Perron effects, positive
LEs may not imply instability and chaos [Danca &
Kuznetsov, 2018]. We strongly believe that this ef-
fect might arise from systems of FO too.

Since the routine fde_pil2_pc.m can be used for or-
der ¢ = 1 (see [Garrappa, 2017]), the code proposed
in this paper can be used for systems modeled by
equations of FO and 10. Actually, in order to reduce
the mentioned inherent errors for a given system to
which one know the LEs for the IO case, one can run
the code FO_nc Lyapunov.m with ¢ = 1 and adjust
the above parameters h and h_norm until the ob-
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tained LEs are approximatively identical with the
IO case. Also, an interesting study would be to com-
pare the results obtained with algorithms from time
series with the results obtained using the equations
of the model such as the presented algorithm.

As the author of the utilized routine lyapunov.m
doesn’t give any warranty regarding the accuracy
of the results (a normal assumption for all algo-
rithms for LEs), we advise readers to use the two
proposed codes, the one for the commensurate case
[Danca & Kuznetsov, 2018] and the present code,
with a justified precaution. In the author’s opinion,
it is almost impossible to write a 100% efficient pro-
gram for finding LEs of 10 or FO systems by using
whatever algorithm. Therefore, finding numerically
LEs remains a more spectacular than precise tool
in the studies of nonlinear dynamics.

Finally, it is noted beside the caution required by
the relative accuracy of the numerically obtained
values of LEs, typically for all numerical methods
for LEs, a special attention should be given to the
periodicity problem of FO systems presented in Sec-
tion 2.

The code can be downloaded from MATLAB Cen-
tral File Exchange:
https://www.mathworks.com/matlabcentral/
fileexchange /92753-code-for-noncommensurate-
fractional-order-lyapunov-exponents
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A. Matlab code for LEs of

non-commensurate FO

function [t,LE]=FO0_NC_Lyapunov(ne,ext_fcn,t_start,

R NI T T T i A T I i I AT T T T T T i i i i S i i i e T T T N i

h_norm,t_end,x_start,h,q,out);

Program to compute the spectrum of Lyapunov
exponents as function of time of systems

of non-commensurate fractional order defined
with Caputo’s derivative

author Marius-F. Danca
web:http://danca.rist.ro/
email: danca@rist.ro

The program uses a fast variant of the Adams-
Bashforth-Moulton for fractiomnal-

order differential equations: fde_pil2_pc.m, by
Roberto Garrappa: shorturl.at/izJW3,

see also

R.Garrappa, Numerical Solution of

Fractional Differential Equations: A Survey and
a Software Tutorial, Mathematics 2018, 6(2), 16.

files required: fde_pil2_pc, FO_NC_Lyapunov.m
and the function containing the extended system,
ext_fnc.

Files FO_NC_Lyapunov.m, fde_pil2_pc.m and
ext_fnc must be in the same folder.

FO_NC_Lyapunov.m is developed, by modifying
the program for the commensurate order
FO_Lyapunov.m: shorturl.at/suzF7 (see also
Lyapunov.m by V.N. Govorukhin)

Input:

ne - system dimension;

ext_fcn -function containing the extended system;
t_start, t_end - time span for fde_pil2_pc.m;
h_norm - step for Gram-Schmidt renormalization;
x_start - initial condition;

h - integration step;

g=[q_1;9_2;...;q_ne] - the fractional order;

out - priniting step of LEs values;

out==0 - no print.

Output:

t - time values;

LE Lyapunov exponents to each time value printed
every ’out’*h_norm steps.

How to use it:

[t,LE]=FO_NC_Lyapunov(ne,ext_fcn,t_start,h_norm,
t_end,x_start,h,q,out);

Example:

[t,LE]=FO_NC_Lyapunov(3,0Lorenz_ext.m,

For speed, starred lines can be commented.

Cite the code as:

Marius-F. Danca, Matlab code for Lyapunov
exponents of fractional-order systems,
Part II: The non-commensurate case, IJBC.

The algorithm for COMMENSURATE order is
explained in:

[1] Marius-F. Danca, Nikolay Kuznetsov, Matlab
code for Lyapunov exponents of fractional order
systems, IJBC, 28(05), 1850067 (2018).

figure;
hold on;

h
%

Set orders q for extended system (ne system
equations + ne*ne variational equations)

g=repmat(q’,ne+1,1);

YA

Memory allocation

x=zeros (ne*(ne+1),1);
x0=x;

c=

zeros(ne,1);

gsc=c; zn=c;

n_

YA

it = round((t_end-t_start)/h_norm);
Initial values for extended system

x(1:ne)=x_start;

i=

1;

while i<=ne

x((ne+1)*i)=1.0;
i=i+1;

end

t=

t_start;

LE=zeros(ne,1);

A

Main loop

it=1;
while it<=n_it

YA

Solution of extended ODE system on [t,t+h_nrom]
[T,Y] = fde_pil2_pc(q,ext_fcn,t,t+h_norm,x,h);
t=t+h_norm;

Y=transpose (Y) ;
x=Y(size(Y,1),:); %solution at t+h_norm
i=1;
while i<=ne
i=1
while j<=ne;
x0(ne*xi+j)=x(ne*xj+i);
J=i+1
end;
i=i+1;
end;
construct new orthonormal basis by gram-schmidt
zn(1)=0.0;
j=1;
while j<=ne
zn(1)=zn(1)+x0(nexj+1) ~2;




J=j+1;
end;
zn(1)=sqrt(zn(1));
j=1;
while j<=ne
x0(ne*j+1)=x0(ne*j+1)/zn(1);
J=j+1;
end
3=2;
while j<=ne
k=1;
while k<=j-1
gsc(k)=0.0;
1=1;
while 1<=ne;
gsc(k)=gsc(k)+x0(nex1+j)*x0(ne*xl+k) ;
1=1+1;
end
k=k+1;
end
k=1;
while k<=ne
1=1;
while 1<=j-1
x0 (nexk+j)=x0(nexk+j) -gsc (1) *x0 (nexk+
1);
1=1+1;
end
k=k+1;
end;
zn(j)=0.0;
k=1;
while k<=ne
zn(j)=zn(j)+x0(nexk+j) "2;
k=k+1;
end
zn(j)=sqrt(zn(j));
k=1;
while k<=ne
x0 (nexk+j)=x0(nexk+j)/zn(j);
k=k+1;
end
j=j+1;
end
update running vector magnitudes
k=1;
while k<=ne;
c(k)=c(k)+log(zn(k));
k=k+1;
end;
normalize exponent
k=1;

REFERENCES

while k<=ne
LE(k)=c(k)/(t-t_start);
k=k+1;

end

i=1;

while i<=ne
j=1;
while j<=ne;

x(nexj+i)=x0(ne*xi+j);

Jj=jt+1;
end
i=i+1;
end;
x=transpose(x) ;
it=it+1;
YA print and plot results
if (mod(it,out)==0)% (%)
fprintf (’%10.2f 7%10.4f %10.4f %10.4f\n’
,[t,LE’]); (*)
end; % (%)
plot(t,LE)% (*)
end
xlabel(’t’,’fontsize’,16)% (%)
ylabel(’LEs’,’fontsize’,14) (*)
set(gca,’fontsize’,14)% ()
box on;Y (%)
line([0,t],[0,0],’color’, ’k’)Y% (%)
axis tight% (€))

B. Lorenz extended system

function f=Lorenz_ext(t,x)
f=zeros(size(x));
% nex(ne+1) variables allocated for variational
equations
% Here a=10, b=23, c=8/3;
X= [x4), x(7), x(10);
x(5), x(8), x(11);
x(6), x(9), x(12)]1;%To be modified if ne>3
% ne equations (Lorenz system)
£(1)=10*%(y-x);
f(2)=-x*z+23*x-y;
£ (3)=xxy-8/3%*z;
% Jacobian matrix
J=[-10, 10, O;
23-z, -1, -x;
y, x, -8/31;
% Variational equations
£(4:12)=J*X; ) To be modified if ne>3
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Fig. 1. (a) Graphs of the derivative DY sin(t) = t' "9 E 5_4(—t?) for ¢ € {0.1,0.4,0.7, 1}. Circled regions reveal the differences
between the derivative of IO of sin (¢ = 1), and the non periodic derivatives for g € {0.1,0.4,0.7}; (b) Autocorrelation of the
derivative DY for ¢ = 0.4.
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Fig. 2. Sketch of a NPT.
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Fig. 3. (a) Phase plot of a trajectory of the Lorenz system (3) for b = 23; (b) Time evolution of LEs for b = 23.
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Fig. 4. (a) Phase plot of a trajectory of the Lorenz system (3) for b = 28; (b) Time evolution of LEs for b = 28.
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[Danca & Kuznetsov, 2018].



