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Abstract

In this paper we provide numerical evidence, via graphics generated

with the help of computer simulations, that switching the control parame-

ter of a dynamical system belonging to a class of fractional-order systems

in a deterministic way, one obtains an attractor which belongs to the

class of all admissible attractors of the considered system. For this pur-

pose, while a multistep numerical method for fractional-order differential

equations approximates the solution to the mathematical model, the con-

trol parameter is switched periodically every few integration steps. The

switch is made inside of a considered set of admissible parameter values.

Moreover, the synthesized attractor matches the attractor obtained with

the control parameter replaced with the averaged switched parameter val-

ues. The results are verified in this paper on a representative system, the

fractional-order Lü system. In this way we were able to extend the ap-

plicability of the algorithm presented in earlier papers using a numerical

method for fractional differential equations.
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1 Introduction

In this paper we investigate numerically the possibility to synthesize any at-
tractor of a class of fractional-order dynamical systems depending on a real
parameter by periodic parameter switchings.

While in [1, 2] the attractors synthesis has been achieved and tested for a
wide class of continuous dynamical systems of integer order, in the present paper
we numerically check that this algorithm can be adapted to a general class of
dynamical systems of fractional order. For this purpose we have chosen the
Lü system of fractional order 0.9 as a prototypical example. This value of the
order has been chosen because results presented in earlier papers indicate that
orders close to 1 exhibit practically more relevant phenomena. In particular,
chaotic behaviour tends to disappear if the order becomes too small [3]. Via a
numerical method for differential equations of fractional order described in more
detail below, our algorithm allows to synthesize any attractor of the fractional
Lü system by switching the control parameter within a properly chosen set of
values following some deterministic or even random rule.

As it is known, a given dynamical system depending on a real parameter may
have, for a fixed parameter value, several attractors, called local attractors (see
e.g. [4, 5, 6]). These invariant sets form the so called global attractor [6]. Given
a value of the control parameter, each local attractor can be reached, subject
to an appropriate choice of the of the initial conditions. In other words, the
global attractor contains all solutions, including stationary solutions, periodic
solutions, as well as chaotic attractors, relevant to the asymptotic behaviors of
the system. The study of global attractors is one of the major research topics
in dynamical systems, in particular within the context of PDEs (see e.g. [7]).

Because of the numerical character of this paper, for convenience, we omit
the attribute “global” unless necessary and, by a slight abuse of notation, by
attractor we will understand the working notion of ω-limit set approximation [8]
obtained for a fixed, well determined initial condition, after a sufficiently long
period of transients neglected. Thus, the attractor is understood sometimes as
being an invariant set that attracts its neighborhood, or attraction basin, and
equals the ω-limit set of one of its neighborhoods. (A discussion of the concept
of an attractor in the theory of finite-dimensional dynamical systems is given
by Milnor [9]).

Therefore, in our numerical experiments, we deal with orbits obtained by
some numerical method paying a special attention to initial conditions. For this
purpose, all the numerical experiments for a specific case were made considering
the same attraction basin for the initial conditions.

Nowadays, it has been found that in interdisciplinary fields, there are systems
which can be described by fractional differential equations much more efficiently
than by classical techniques. The main reason for using the integer-order models
was the absence of solution methods for fractional differential equations while
one possible explanation of such unpopularity could be that there are multiple
nonequivalent definitions of fractional derivatives [10, 11]. Also, the fractional
derivatives have no evident geometrical interpretation because of their nonlocal
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character. However, during the last 10 years, fractional-order dynamical systems
have started to attract the attention of the scientific community.

Fractional mathematical concepts allow to describe certain real objects more
accurately than the classical “integer” methods. Examples of such real objects
that can be elegantly described with the help of fractional derivatives displaying
fractional-order dynamics may be found in many fields of science like physics,
engineering, mathematical biology, medicine, finance etc. (see e.g. [12, 13, 14,
15, 16, 17, 18, 19, 20]). Therefore the extension of the synthesis algorithm to
systems of this kind is of real interest.

The paper is structured as follows: Section 2 presents some basic concepts, in
Section 3 the attractors synthesis (AS) algorithm is explained, while in Section 4
the algorithm is applied to the particular case of a Lü system of fractional-order.
The last section presents the conclusions.

2 Notions and preliminaries

The attractors synthesis (AS) algorithm, introduced by Danca et al. in [1],
can be applied to a large class of integer-order autonomous dynamical systems
modeled by the initial value problem (IVP)

S : ẋ = fp(x), x(0) = x0, (1)

where fp is an Rn-valued function with a single bifurcation parameter p ∈ R,
n ≥ 3, having the expression

fp(x) = g(x) + pAx, (2)

with g : Rn → Rn a continuous nonlinear function, A a real constant n × n
matrix, x0 ∈ Rn, and t ∈ I = [0,∞). This class of dynamical systems is rather
large; it contains well known systems such as Lorenz, Rössler, Chen, Chua, Lü,
Rikitake, Lotka-Volterra, Fabrikant-Rabinovich etc.

In this paper we extend the applicability of AS algorithm to a class of
fractional-order dynamical systems modeled by the IVP

S : Dq
∗x = fp(x), x(k)(0) = x

(k)
0 (k = 0, 1, . . . , ⌈q⌉ − 1), (3)

where fp has the form (2), q is some positive real number and Dq
∗ denotes the

Caputo differential operator of order q with starting point 0, i.e.

Dq
∗x(t) =

1

Γ(⌈q⌉ − q)

∫ t

0

(t − τ)⌈q⌉−q−1D⌈q⌉x(τ)dτ,

(see e.g. [10, 21]). Here ⌈·⌉ denotes the ceiling function that rounds up to the
next integer, and D⌈q⌉ is the standard differential operator of order ⌈q⌉ ∈ N.

Throughout this paper, we shall assume the existence and uniqueness of
solutions on the maximal existence interval I.
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To implement the AS algorithm, it is necessary to provide a numerical scheme
for the solution of the IVP (3). To this end we use the fractional Adams-
Bashforth-Moulton (ABM) method discussed in [21] and analyzed in a detailed
way in [22]. Specifically, the algorithm works by introducing a discretization
with grid points ti = hi, i = 0, 1, . . ., with a presassigned step size h. For
i = 0, 1, 2, , . . . it then first computes a preliminary approximation xP

i+1 for x(ti)
via the formula

xP
i+1 =

⌈q⌉−1
∑

j=0

tji+1

j!
x

(j)
0 +

1

Γ(q)

i
∑

j=0

bj,i+1fp(xj) (4)

where

bj,i+1 =
hq

q
((i + 1 − j)q − (i − j)q) , (5)

and then it determines the actual final approximation xi+1 for x(ti+1) that is
effectively used via

xi+1 =

⌈q⌉−1
∑

j=0

tji+1

j!
x

(j)
0 +

hq

Γ(q + 2)





i
∑

j=0

aj,i+1fp(xj) + fp(x
P
i+1)



 (6)

with
a0,i+1 = iq+1 − (i − q)(i + 1)q (7)

and
aj,i+1 = (i − j + 2)q+1 + (i − j)q+1 − 2(i − j + 1)q+1 (8)

for j = 1, 2, . . . , i. For a detailed derivation of these formulas we refer to [21]; a
deep mathematical analysis of this approach is given in [22].

Our preference for the fractional ABM scheme in comparison to the large
number of other possibilities that can be found in the literature is due to the
observations of Tavazoei et al. [23, 24] who have found that many other methods
tend to be unreliable when used to numerically determine whether a fractional
system is stable or not.

The Gamma function was approximated in this work using a variant of the
so-called Lanczos approximation [25]

Γ(z) =

∑6
i=0 piz

i

∏6
i=0(z + i)

(z + 5.5)z+0.5e−(z+5.5)

for z ∈ C with Re(z) > 0 where the coefficients pi are shown in Table 1.
Compared to the standard methods for ODEs of integer order, where the

current approximation xk depends only on the results of a few backward steps,
the fractional ABM scheme (like all reasonable numerical methods for fractional
differential equations) requires the entire backward integration history at each
point in time. In other words, each current calculated value depends on all
previous values x0, x1, . . . , xk−1. This feature implies a serious drawback with
respect to the required computing time but it is necessary to appropriately
reflect the memory effects possessed by fractional differential operators.
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Table 1: Coefficients of the Lanczos approximation of the Gamma function.

i pi

0 75122.6331530
1 80916.6278952
2 36308.2951477
3 8687.2452971
4 1168.9264948
5 83.8676043
6 2.5066283

Remark 1 Another way to deal with fractional derivatives, suitable for Matlab
programming, uses of the frequency domain approximation and was proposed by
researchers on automatic control (see e.g.[19, 26, 27]).

3 The AS algorithm

In order to describe the attractors synthesis algorithm, we shall use the following
notation:

• A — the set of all global attractors depending on parameter p, including
attractive stable fixed points, limit cycles and chaotic attractors;

• P ⊂ R — the set of the corresponding admissible values of p;

• PN = {p1, p2, . . . , pN} ⊂ P — a finite ordered subset of P containing N
different values of p;

• AN = {Ap1 , Ap2 , . . . , ApN
} ⊂ A — the set of global attractors correspond-

ing to PN (see Remark 2);

• I =
⋃

j=1,2,...

(

⋃N
i=1 Iij

)

with the time-subintervals Iij of time length ∆ti,

i = 1, 2, . . . , N for all j = 1, 2, . . ..

The structure of Iij will be defined later in this section.
It is assumed that all the values of PN = {p1, p2, . . . , pN} for which the

system has regular or chaotic motion are accessible.

Remark 2 A is non-empty and it follows naturally that for the considered class
of systems, a bijection between the sets P and A may be defined. Thus, to any
p ∈ P, there is a unique corresponding attractor and vice versa.

The AS algorithm consists in switching p as a periodic piecewise continuous
function p : I → PN of period T =

∑N

i=1 ∆ti while the IVP (1-2) is integrated,
i.e.

p(t) = pϕ(i) for t ∈ Iij , i = 1, 2, . . . , N, j = 1, 2, . . . ,
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where ϕ permutes the subset {1, 2, . . . , N}.
Via numerical computations and graphical simulations we proved in [1] that

the AS method can force the system S to evolve either along any stable (regular)
attractor or on any unstable (chaotic) attractor, whatever the initial behavior
was and moreover, we verified that the obtained attractor belongs to the set of
all admissible attractors of S.

Using a numerical method with fixed step size h to integrate IVP (1)-(2),
the simplest way to implement the AS algorithm numerically is to choose ∆ti
as multiple of the step size h, ∆ti = mih, where the “weights” mi are some
positive integers to be chosen empirically. Schematically, for a fixed value of
h under consideration, the AS method can be written simplified as the “time
evolution” (trajectory)

[m1pϕ(1), m2pϕ(2), . . . , mN pϕ(N)], (9)

with the following meaning: for the first m1 integration steps, p = pϕ(1), for the
next m2 integration steps, p = pϕ(2) and so on until the N -th time subinterval
of length mNh where p = p

ϕ(N)
for mN times, after which the algorithm repeats

on the next N time subintervals and so on.
For example, by the scheme [1p2, 3p1] where ϕ(1) = 2, ϕ(2) = 1, m1 = 1 and

m2 = 3, one should understand the sequence of p : p2, 3p1, p2, 3p1, p2, 3p1, . . .
which means that while the considered numerical method integrates (1-2), with
fixed step size h, p switches in each time subinterval Iij , between the values of
P2 = {p1, p2}.

Here and in the following, let A∗ denote the synthesized attractor generated
by the AS method and Ap∗ the averaged attractor with

p∗ =

∑N

k=1 mkpϕ(k)
∑N

k=1 mk

, (10)

obtained by integrating the IVP (1-2) for p = p∗.
Numerical evidence on specific examples indicates that A∗ belongs to A and,

moreover, A∗ is “identical” with Ap∗ . By attractors “identity” we understand
here a best possible overlap of orbits in the phase space, and a small Hausdorff
distance for the stable fixed points and limit cycles. (In the case of chaotic
attractors this notion should be considered taking into account that the a chaotic
attractor is entirely generated after an infinite time.) Thus, to convince ourselves
that A∗ ∈ A, we computed A∗ and compared it successfully with Ap∗ with p∗

given by (10).

If we denote αk = mk/
∑N

k=1 mk, it is easy to see that p∗ is a convex com-

bination: p∗ =
∑N

k=1 αkpϕ(k) because
∑N

k=1 αk = 1. Therefore p∗ ∈ P . Taking
into account the bijection between P and A, we are entitled to consider that
the same convex structure is preserved into A. Thus A∗ ∈ A.

Of course, since there are infinitely many ways to choose the weights mk in
(10), for any given p∗ and N there are infinitely many possible choices of PN

that satisfy this equation.
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Because of the mentioned convexity property, the AS algorithm can be ap-
plied not only in the deterministic way (9) but even in some random way [2].

As shown by the numerical experiments of this paper and those in [1] and
[2], the AS algorithm proves to be computationally and numerically robust with
respect to parameter switching.

4 Attractors synthesis of the fractional Lü sys-

tem

The AS algorithm was successfully tested on integer-order chaotic dynamical
systems. In this section we show numerically that it works for fractional chaotic
dynamical systems too. For this purpose we choose the fractional variant of
the system found in 2002 by Lü et al. [28] which unifies the Lorenz and Chen
systems (see the proof in [28])

Dq
∗x1 = p(x2 − x1),

Dq
∗x2 = −x1x3 + 28x2, (11)

Dq
∗x3 = x1x2 − 3x3.

Because for many real fractional systems the order of the fractional differential
operators is less than 1, we fix in this paper q = 0.9 which is a typical value
that exhibits all the relevant phenomena (the development of the dynamics of
this system as q varies is well known [3]). The real (mathematical) order of
fractional systems is the sum of the orders of all involved derivatives. As it
is well known, chaos cannot occur in autonomous continuous-time systems of
integer-order less than three according to the Poincaré–Bendixon theorem. In
autonomous fractional-order systems, like the Lü system, this is not the case as
one can be seen in this paper, where for q = 0.9 the real order of the system is
2.7.

In order to apply the AS algorithm, the Lü system (11) was integrated with
the fractional ABM method with 15000 steps of step size h = 0.005.

It is easily seen that the number of initial conditions that one needs to
specify in our case 0 < q ≤ 1 is ⌈q⌉, i.e. just one condition. Initial conditions are
generally not critical (except for the case when several local attractors coexist
for a specific p value). Therefore, A∗ and Ap∗ for this example are generated
numerically starting from the same initial conditions, here (−0.5, 0.5, 0.5). Also,
as stated in Section 3, transients were neglected, especially for stable limit cycles.

The coincidence between A∗ and Ap∗ was verified numerically by means of
phase plots and Hausdorff distance [29] for the stable limit cycles, which was
of order of 10−1. However for the integer-order systems, Hausdorff distance
is smaller (up to the order of 10−3). This could be possible because of the
smaller errors of the numerical methods for integer-order differential equations
(compare, e.g., the well known O(h2) error bound for our one-step Adams-
Bashforth-Moulton method in the case q = 1 with the weaker bounds for the
fractional version discussed in detail in [22]).
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To explore the Lü system dynamics, the bifurcation diagram was drawn
(Figure 1).

First, let us consider the scheme (9) for N = 2 and weights m1 = m2 = 1,
i.e. [1p1, 1p2] for p1 = 33.5 and p2 = 35.5. For these values, (10) gives the value
p∗ = (1 · p1 + 1 · p2)/2 = 34.5 which belongs inside of a periodic window in the
parametric space. The synthesized attractor A∗ is a stable limit cycle (Figure
2), even though Ap1 and Ap2 are chaotic attractors (see also Fig. 1). As can be
seen from Fig. 2 c, A∗ and Ap∗ are identical.

A chaotic attractor can be synthesized with p1 = 38.8 and p2 = 55. Using the
scheme [1p1, 2p2], p∗ = 49.6 and the synthesized chaotic attractor A∗ coincides
with A49.6 (see Fig. 3). The non-uniqueness of solutions for (10) can be under-
lined if the same attractor A34.5, synthesized above with the scheme [1p1, 1p2],
is generated with another scheme, for example with N = 3: [1p1, 1p2, 1p3] for
p1 = 32, p2 = 35, p3 = 36.5 (Fig. 4).

The dynamics of the synthesized attractor A∗ does not depend on the dy-
namics of the underlying attractors. For example, a chaotic attractor can be
synthesized starting from two different kinds of attractors like those used in Fig.
3, where Ap1 is chaotic and Ap2 has a stable fixed point, but can be synthesized
starting from e.g. two regular motions withe the scheme [1p1, 1p2] for p1 = 32
and p2 = 34.5, when A∗ is a chaotic attractor identical with A33.25 (Fig. 5).

5 Conclusion

In this paper we demonstrated numerically, on the particular case of the fractional-
order Lü system, that switching deterministically the control parameter p inside
of a set of parameter values, the obtained (synthesized) attractor A∗ belongs to
the set of all attractors of this system and, moreover, is identical to the attractor
obtained for p = p∗ with p∗ given by (10). Thus, the AS algorithm seems to
work not only for integer-order dynamical systems (as proved numerically in [1]
and [2]), but for a class of fractional-order dynamical systems modeled by the
IVP (3).
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