
Convergence of a parameter switching algorithm for a

class of nonlinear continuous systems and a

generalization of Parrondo’s paradox

Marius-F. Danca

Department of Mathematics and Computer Science

Avram Iancu University, 400380 Cluj-Napoca, Romania

and

Romanian Institute for Science and Technology

400487 Cluj-Napoca, Romania

Abstract

In this paper, we prove the convergence of a numerical algorithm that switches
in some deterministic or random manner, the control parameter of a class of
continuous-time nonlinear systems while the underlying initial value prob-
lem is numerically integrated. The numerically obtained attractor is a good
approximation of the attractor obtained when the control parameter is re-
placed with the average of the switched values. In this way, a generalization
of Parrondo’s paradox can be obtained. As an application, the Lorenz and
Rabinovich–Fabrikant systems are used for illustration.
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1. Introduction

As is well known, Parrondo’s paradox was named after the Spanish physi-
cist J.M.R. Parrondo in 1996 and affirms that two losing games together can
be set up to produce a winning scenario.

This paper is concerned with the convergence of a parameter switching
algorithm for a class of continuous-time nonlinear systems and its connection

Email address: danca@rist.ro (Marius-F. Danca)

Preprint submitted to Elsevier August 5, 2012



with Parrondo’s paradox.
In [1], Parrondo et al. shoed that alternating randomly or determinis-

tically the loosing gains of two games, one can actually obtain a winning
game with a positive gain, i.e.: ”losing + losing = winning” (see also [2])
or, in other words: ”two ugly parents can have beautiful children” (Zeil-
berger, on receiving the 1998 Leroy P. Steele Prize). Since its discovery, this
apparent contradiction has been known as Parrondo’s paradox, and has be-
come an active area of research for example in minimal Brownian ratchet [3],
discrete-time ratchets [4], molecular transport [5], and so on. In its original
form, Parrondo’s game can be considered as game theory in the Blackwell
sense [6] . Recently, in [7, 8] Parrondos original games was extended to in-
clude player strategy (for a recent review of the history of Parrondos paradox,
developments, and connections to related phenomena, see [9]).

This kind of alternation weakness-strength, order-chaos, loosing-wining
and so on, can be found or induced in many physical, biological, quantum,
mathematical systems, control theory, or even fractals, where combining pro-
cesses may lead to counterintuitive dynamics. This apparently trivial phe-
nomenon seems to be typical not only for theoretical systems but also in
nature, where there are many interactions due to some accidental or inten-
tional parameter witches. Even more, there is a belief that this kind of
mechanism could be used even as a possible explanation of the origin of life
[10].

While almost all the systems in the mentioned applications are of discrete-
time (possible chaotic) and imply only a dichotomic like alternation between
two states: losing and winning, some intensive numerical tests have been
realized on some classes of nonlinear continuous-time systems in the state
space R

n with n ≥ 2, of integer or fractional order, continuous or discontin-
uous with respect to the state variable and depending linearly on a single
real parameter p (defined in Section 2). It was shown that alternations of
N ≥ 2 different behaviors (with N being of order ten or even higher), can
lead to a generalized Parrondo like paradox (as can be seen in [11]). By
dealing with N ≥ 2 behaviors, however, one actually has no ”alternations”
but ”switchings”.

Let us consider an Initial Value Problem modeling a nonlinear continuous-
time system. By switching p while numerically integrating the IVP, via an
algorithm called Parameter Switching (PS) (described in Section 2), inside a
chosen set of values, under some reasonable mild conditions for most chaotic
systems (such as uniqueness and boundedness), one obtain a behavior which
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is approximately identical to the one obtained by integrating the IVP with
p being replaced by the average of the switched values (several examples can
be found in [11]).

If we replace in Parrondo’s paradox the word ”loosing” with ”chaos”
and, by a minor abuse of notation ”winning” with ”regular” (as the op-
posite of ”chaos”)1 then, by switching p within two values using the PS
algorithm we might have one of the following, perhaps surprising, situations:
”chaos+chaos=regular”, ”regular+regular=chaos”, and some other possible
(maybe less spectacular) combinations; in other words, a Parrondo’s like
paradox for continuous-time systems.

Moreover, if with the PS algorithm p is switched within the set PN =
{p1, p2, ..., pN}, for some positive integer N ≥ 2, which corresponds to the
regular or chaotic behaviors A(pi) (distinct for different i), then we obtain
a generalization of Parrondo’s game. As shown in Section 4, this could be
written formally as follows:

∑N

i=1 A(pi) = A∗, where A∗ is a well determined
behavior corresponding to p = p∗ (the average value of pi (see Section 2)).
The values p∗, pi, and also the behaviors A∗, Ai are, respectively, different
from each other.

Here, we note that compared to discrete-time systems, where alternations
do not always lead to characteristic behaviors and may modify the underlying
system (as shown in Danca et al. [12], Loskutov [13], Almeida et al. [14]
and Romera et al. [15]), for the considered continuous-time cases, the PS
algorithm always enhances one of the possible behaviors of the considered
system [11].

It is easy to understand that the PS algorithm can be used as a kind of
control or anticontrol (chaotification) technique, in the sense that any kind
of possible chaotic or regular behaviors of some system in concern can be
enhanced. Compared to the classical algorithms for control or anticontrol of
chaos, where tedious calculus is necessary, the PS algorithm can be easily
implemented (Section 4).

Besides the fact that the PS algorithm allows to extend Parrondo’s al-
gorithm to general classes of systems, its utility resides in the possibility to
control or anticontrol chaos in the following sense: suppose that some desired
targeted value p∗ for p (for which the considered system behaves regular or

1Apparently, a most adequate notation would be ”chaos” and ”order” but, as known,
there is order although few decades ago scientists thought there is only chaos or disorder.
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chaotically) cannot be accessed. Then, as shown in Section 2, by choosing
an appropriate set PN of other (accessible) values for p, p∗ can be easily
obtained with the PS algorithm so that the intended control or anticontrol
is achieved. Reversely, given some set PN , by switching p within this set in
whatever manner (deterministically or randomly), one obtains one a possible
behavior of the considered system.

The article is organized as follows: Section 2 presents the PS algorithm,
Section 3 proves the PS convergence and, in Section 4, the Lorenz and
Rabinovich–Fabrikant systems are considered as an application. Finally, con-
clusions and open problems are presented.

2. Preliminaries and PS algorithm

2.1. Utilized notions

A mathematical model of the considered class of continuous nonlinear sys-
tems, is generated by a system of autonomous ordinary differential equations
on R

n. The corresponding Initial Value Problem (IVP) has the following
defining equations and initial conditions

ẋ(t) = f(x(t)) := g(x(t)) + pAx(t), t ∈ I = [0, T ], x(0) = x0, (1)

where f is an n-dimensional vector-valued function with g : R
n → R

n a
nonlinear (at least) continuous vector-valued function, x0 ∈ R

n, A ∈ Mn(R)
a non-zero square matrix with real entries, and p ∈ R the control (bifurcation)
parameter.

Most known chaotic dynamical systems such as Lorenz, Rösler, Chen,
Lotka-Volterra, Rabinovich–Fabrikant (system presented by Danca and Chen
in [16]), Hindmarsh-Rose, Lü, some classes of minimal networks and many
others, can be modeled by the IVP (1).

Because in practical examples, there is a large number of nonlinear sys-
tems which do not satisfy globally Lipschitz condition, such as the Lorenz-like
systems, for uniqueness a locally Lipschitz condition and apriori bound on
the solutions (such that the solutions do not blow up in any finite time)
required (see, for example, [17]). As known, unboundedness usually causes
difficulty in defining an appropriate notion of attractor (e.g. omega-limit sets
can be empty). Therefore, we consider the following common assumption

Assumption 1. Given an initial condition x0, to every p there corresponds
a unique bounded solution to IVP (1).
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Remark 1.

i) As known, attractors present continuous dependence on a parameter. Roughly
speaking, the dependence of the solution of the IVP (1) on the parameter p
is continuous as long as the function f is so (see e.g. [18] or [19, p. 83]).
Therefore, under the above assumption, the PS algorithm does not affect the
solution continuity;

ii) Instead of the boundness condition, one can use the dissipative property,
which is also an essential prerequisite for the existence of global attractors
(see e.g. [20], [21]). Thus, if f ∈ C1, the simplest form for dissipativity
is given via the divergence (Gauss) theorem, i.e. the trace of the Jacobian:
∑n

i=1
∂f(x)
∂xi

< 0 (see, for instance, Chapter 16.9 in Stewart’s book [22]). It is
to mention that all analyzed systems in this paper are dissipative.

Roughly speaking, in this paper the global attractor (notion borrowed
from PDEs) will be considered in a state space region of a dynamical system
characterizing all the long-time dynamics of the underlying equation. Note
that the trajectories can enter but not leave, containing no smaller such region
(for the background of attractors see, for example, [23], [24], [21], [25]). In
other words, it can be considered as containing all the solutions, including
chaotic solutions as well as stable stationary and periodic solutions.

The term local attractor (as mentioned by Stuart and Humphries in [21,
p. 83]) is used sometimes for attractors which are not global attractors.
For a given parameter p, function on initial conditions, the global attractors
may contain several local attractors. Therefore, a global attractor can be
viewed as being ”composed” of the set of all local attractors separated by the
attraction basins (i.e. the initial conditions). If the local attractor is unique,
then it coincides with the global attractor (called, in this case, maximal
attractor).

The best way to simulate Parrondo’s paradox for systems modeled by (1)
is to approximate numerically the system attractors, while the PS algorithm
is applied (see, for example, [26] for numerically approximations of global
attractors).

Already it is well known that if a single trajectory is numerically approx-
imated over a long time, the approximating trajectory can diverge from the
true trajectory. Nevertheless, we can suppose that the numerical solution
remains close enough to some exact solution for a reasonably long time (see,
for instance, Coomes [33] or Eden et al. [23]).
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Hereafter, for brevity, and without affecting the PS algorithm implemen-
tation, by attractor one understands the global attractor numerically approx-
imated by a (unique) solution through a chosen initial condition x0, after the
transients have been neglected. Under Assumption 1, one can consider that
to each p, for a given initial condition, there corresponds uniquely an at-
tractor which can be either regular (i.e., in this paper, stable fixed points
and limit cycles) or chaotic. If some global attractor consists in several local
attractors, they will be identified by an adequate choice of initial conditions.

2.2. PS algorithm

Next, we show how to implement the PS algorithm. For this purpose,
let us choose some set PN = {p1, p2, ..., pN} and an equidistant grid of the
time interval I, with nodes k∆t, k = 0, 1, ... (the mesh size being ∆t) and
I =

⋃

j=1,2...(
⋃N

i=1 Iij) (Fig. 1), where the subintervals Iij have, for every j =
1, 2, ..., lengths mi∆t, i = 1, 2, ..., N , with mi being some positive integers.
On these subintervals, consider p as a piecewise constant function p(t) = pi
for t ∈ Iij . Then, for a fixed ∆t, the PS algorithm can be implemented using
the following scheme

S∆t , [p1|I1j , p2|I2j , ..., pN |INj
], for j = 1, 2, ... (2)

which means that while the underlying IVP is integrated, for j = 1, p will
first take the value p1 for t ∈ I11 (i = 1), then p2 for t ∈ I21 (i = 2), and so
on, until t ∈ IN1 when p = pN and i = N (see Fig. 1), after which j = 2 and
the algorithm repeats in the next set of N intervals Ii2, i = 1, 2, ..., N , and
so on until t ≥ T .

In most applications, the largest length of the time subintervals Iij, can
be chosen to be of order 20h (and even 100h for few particular cases), and,
for h in general 10−1 − 10−3, depending on the systems characteristics.

For simplicity, once ∆t is fixed, we introduce the following simplified form
for the scheme (2)

S , [m1p1, m2p2, ..., mNpN ]. (3)

3. PS Convergence

Based on the convergence of some numerical schemes with single constant
step size for ODEs (e.g. the standard Runge-Kutta (RK4) method), we prove
in this section that applying the PS algorithm to the IVP (1), the obtained
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solution is close enough to the solution obtained when p is replaced with the
averaged values of PN , p

∗, given by

p∗ =

∑N

i=1 mipi
∑N

i=1mi

, (4)

which, under the considered assumptions, converges to the exact solution.
For this purpose, it is sufficient to prove that the global error tends to zero
as the integration step h → 0.

Theorem 1. (PS algorithm convergence). Let Assumption 1 on the IVP (1)
hold, and consider some given set PN and ∆t. Then, the solution obtained
with the PS algorithm converges to the solution corresponding to p = p∗, with
p∗ given by (4), for every initial condition x0.

Remark 2.

i) The proof does not explicitly require an estimation for the step size ∆t,
because the bounds for ∆t are considered to be implicitly stated by the utilized
convergent numerical scheme (for the RK4 utilized in this paper, we refer
e.g. to [21]).

ii) To avoid the potential problems in choosing, for the two solutions, different
initial conditions (but in the same attraction basin), and for simplicity, let
us consider without loss of generality that both solutions pass through the
same initial conditions x0. However, the convergence can also be proven
when the initial conditions are different (x0 and y0 respectively) but satisfies
‖x0 − y0‖ ≤ ε with ε small enough.

Proof. Since under the considered assumptions any solution through x0 con-
verges to the exact solution, the proof is simple and implies few iteration
steps in calculus. Therefore, the only thing we have to verify, is the global
error tends to zero, as h → 0. For simplicity, we next drop the time vari-
able t and use the following notations: ∆t = h and the solution obtained
with the PS algorithm is xn (approximation to x(nh)), while the solution
corresponding to p∗ is yn (approximation to y(nh)).

The proof is based on the RK4 convergence of the obtained solution to
the exact solution to the IVP (1), under the considered assumptions (see for
instance Theorem 3.4.7 on page 239 in [21]), and consists in finding numerical
solutions by applying inductively RK4, firstly by using the scheme (3), and
then by considering p = p∗. Finally, the global error is determined.
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First, recall that RK4 method applied to the IVP (1) is given by the
following equation

xn+1 = xn +
1

6
(K1 + 2K2 + 2K3 +K4),

where xn is the RK4 approximation of x(tn) and, for our autonomous case
of systems (1),

K1 = hf(xn),

K2 = hf(xn +
1

2
K1),

K3 = hf(xn +
1

2
K2),

K4 = hf(xn +K3).

Consider next h sufficiently small, with x0 and PN , for some N > 1, all
given.

I) Solution with PS algorithm
Let us first determine the numerical solution yn of the IVP (1), starting

from x0, by using some scheme S given by (3). Thus, for the first m1 inte-
gration steps, p = p1, the next m2 steps, p = p2, and so on. f depends on
the two variables y and p: f = f(y, p).

For p = p1, after one step one obtains

K1 = hf(x0, p1) = hg(x0) + hp1Ax0 = hp1Ax0 +O(h),

K2 = hf(x0 +
K1

2
, p1) = hg

(

x0 +
K1

2

)

+ hp1Ax0

+
1

2
h2p1Ag(x0) +

1

2
h2p21Ax0 = hp1Ax0 +O(h),

K3 = hf(x0 +
K2

2
, p1) = hp1Ax0 +O(h),

K4 = hf(x0 +K3, p1) = hp1Ax0 +O(h),

and

y1 = x0 +
1

6
(K1 + 2K2 + 2K3 +K4) = x0 + hp1Ax0 +O(h).
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Next, for the following iteration step with p = p1,

K1 = hf(y1, p1) = hp1Ax0 + hg(y1) = hp1Ax0 +O(h),

K2 = hf(y1 +
K1

2
, p1) = hp1Ax0 +O(h),

K3 = hf(y1 +
K2

2
, p1) = hp1Ax0 +O(h),

K4 = hf(y1 +K3, p1) = hp1Ax0 +O(h),

y2 = x0 + 2hp1Ax0 +O(h),

and, after m1 iterations with p = p1,

ym1
= x0 +m1hp1Ax0 +O(h).

Next, p = p2, and we have

K1 = hf(ym1
, p2) = (m1p1 + p2)hAx0 +O(h),

K2 = hf(ym1
+

K1

2
, p2) = (m1p1 + p2)hAx0 +O(h),

K3 = hf(ym1
+

K2

2
, p2) = (m1p1 + p2)hAx0 +O(h),

K4 = hf(ym1
+K3, p2) = (m1p1 + p2)hAx0 +O(h),

and

ym1+1 = x0 + (m1p1 + p2)hAx0 +O(h),

which, after m2 iterations with p = p2, becomes

ym1+m2
= x0 + (m1p1 +m2p2)hAx0 +O(h).

By iterating the next m3 steps with p = p3, for m4 times with p = p4, and so
on until the Nth subinterval, for mN times, p = pN . At the end of the first
N subintervals Ii1, i = 1, 2, ..., N , j = 1, one have

ym1+m2+...+mN
= x0 + (m1p1 +m2p2 + ...+mNpN)hAx0 +O(h).

Finally, by repeating the algorithm on n consecutive subintervals Iij (i.e.
j = 1, 2, ..., n, with n ∈ N

∗), the numerical solution becomes

yn(m1+m2+...+mN ) = x0 + n (m1p1 +m2p2 + . . .+mNpN) hAx0 +O(h), (5)
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which represents the solution obtained with the PS algorithm.

II) Solution for p = p∗

Let us now consider p = p∗ with p∗ being some real number. Now,
f = f(x), and we obtain

K1 = hf(x0) = hp∗Ax0 + hg(x0) = p∗Ax0h+O(h),

K2 = hf(x0 +
K1

2
) = hg

(

x0 +
K1

2

)

+ hp∗Ax0 +
1

2
h2p∗Ag(x0) +

1

2
h2p∗2Ax0

= hp∗Ax0 +O(h),

K3 = hf(x0 +
K2

2
) = hg

(

x0 +
K2

2

)

+ hp∗Ax0 +
1

2
h2p∗Ag

(

x0 +
K1

2

)

+
1

2
h2p∗2A2x0 +

1

2
h3p∗3A3x0 = hp∗Ax0 +O(h),

K4 = hf(x0 +K3) = hp∗Ax0 +O(h),

and

x1 = x0 +
1

6
(K1 + 2K2 + 2K3 +K4) = x0 + hp∗Ax0 +O(h).

Finally, after n(m1 +m2 + ...+mN ) similar steps, we obtain

xn(m1+m2+...+mN ) = x0 + n (m1 +m2 + . . .+mN )hp
∗Ax0 +O(h), (6)

i.e. the solution for p = p∗.

III) Global error
Next, in order to obtain the global error, en, after n(m1 +m2 + ...+mN )

steps, between the solutions yn(m1+m2+...+mN ) and xn(m1+m2+...+mN ), given by
(5) and (6) respectively, we have to calculate

en = ‖xn(m1+m2+...+mN ) − yn(m1+m2+...+mN )‖

≤ nh‖A‖x0

∣
∣
∣
∣
∣

N∑

i=1

mipi − p∗
N∑

i=1

mi

∣
∣
∣
∣
∣
+O(h),

which, for p∗ =
∑N

i=1 mipi/
∑N

i=1 mi, leads to the following estimation

‖xn(m1+m2+...+mN ) − yn(m1+m2+...+mN )‖ ≤ O(h),

Taking into account the convergence of the RK4 method, with which xn

converges to the exact solution, yn also converges to the exact solution, and
the proof is completed.
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Remark 3.

(i) In [27], Mao et al. have proved the convergence of the PS algorithm based
on the averaging method (see, for averaging theory, e.g. the book of Sander
and Verhulst [28]);

(ii) The proof presented in this paper does not depend on the periodicity of p
switches, as the form of S in (3) suggests. Therefore, due to the convexity
property of p∗, which is behind (4) (denoting αi = mi/

∑N

i=1 mi, one obtains
∑N

i=1 αi = 1), it is easy to see that not only periodic switches can be used but,
such as shown in [29], also random switches can be implemented to achieve
the PS algorithm;

(iii) The convergence of the PS algorithm is clearly supported by characteris-
tic tools for dynamical systems, such as histograms, Poincaré sections, time
series, phase plots or Hausdorff distance, as shown in [11];

(iv) Because the round-off error depends on the computer on which the algo-
rithm is implemented, it was not considered in the numerical analysis.

4. Application

Let us focus on a representative case of the famous Lorenz system de-
scribing a meteorological phenomenon

.
x1 = 10(x2 − x1),
.
x2 = −x1x3 − x2 + px1, (7)

.
x3 = x1x2 −

8

3
x3,

whose dynamics can be demonstrated in Fig. 2, where the bifurcation dia-
gram was drawn for the first component x1, for p ∈ [30, 220]. The integration
step-size for this example was h = 10−2 and T = 75.

Example 1. Let P2 = {90, 96} for which, as shown by the bifurcation
diagram, the system behaves chaotically. If one applies the PS algorithm
with the scheme S = [1p1, 1p2], for which p∗, given by the relation (4), is
p∗ = 93, one finally obtains a stable limit cycle, denoted by A∗ in Fig. 3 (red
plot). Superimposed in the same figure (in order to underline the match)
is the plotted average attractor Ap∗ corresponding to the average value p∗

(blue plot). The tests for the Hausdorff distance revealed a value of order
10−5 (see the Falconer’s book [30, Chapter 9] for the Hausdorff distance).
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For this system, in [11], besides phase plots and Hausdorff distance, time
series, Poincaré sections, histograms and cross-correlation are used to under-
line the match between the two attractors, A∗ and Ap∗.

In this case we can formulate Parrondo’s paradox as: ”chaos+chaos=regular”,
i.e. a chaos control like phenomenon.

Remark 4. ”Summing” (regular or chaotic) attractors, such as this example
would suggest is, to our knowledge, at least a strange, if not impossible, idea.
However, as mentioned before, we just use, as usually for Parrondo’s paradox,
symbolic forms.

Example 2. As shown in [11], there are others possible schemes, S =
[m1p1, m2p2] with p1 = 90, p2 = 96 and m1,2 > 1, which give the same result
(i.e. p∗ = 93) and, obviously, more schemes with N ≥ 3 to approximate
Ap∗ . For example, with N = 4 and the scheme S = [3p1, 3p2, 2p3, 3p4] with
p1 = 126, p2 = 131, p3 = 170 and p4 = 220, one obtains p∗ = 161 which
belongs to another periodic window (see Fig. 2). Both attractors A∗ and Ap∗

are plotted in Fig. 4. The Hasudorff distance is of same order as in Example
1.

Now, considering the behaviors corresponding to these values of p, i.e.
chaos, denoted Ci, i = 1, 2, 3, for the first three values p1,2,3, and regular R
for the fourth one, p4 (see the bifurcation diagram), we have C1+C2+C3+R =
R∗.

Moreover, if we take account the ”weight” of each motion (i.e. the mi

values) we obtain: C1 + C1 + C1
︸ ︷︷ ︸

m1 times

+C2 + C2 + C2
︸ ︷︷ ︸

m2 times

+C3 + C3
︸ ︷︷ ︸

m3 times

+R +R +R
︸ ︷︷ ︸

m4 times

=

R∗, where R∗ represents the obtained regular motion corresponding to p∗ =
161.

Example 3. In order to obtain a chaotic attractor (i.e. anticontrol),
we can slightly modify, for example, the scheme in Example 2. Thus, by
changing only m4: m4 = 8, p∗ is ”pulled” away (due to the mentioned
convexity, see Remark 3 ii) from the periodic window where it was before
(for m4 = 3), to a new value p∗ = 179.4375, which corresponds to a chaotic
motion (Fig. 5). As expected, for anticontrol, a larger time interval I is
now necessary, since in these cases the chaotic attractors are, theoretically,
rigorously obtained only for t → ∞. Also, compared to the above cases, the
Hausdorff distance is bigger now (in this case, of order 10−3). Anyway, even
for relative large time subintervals and smaller step sizes (the length of I4j is
m4h = 8× 0.0001 = 0.0008 ms, with a small step size necessary to maintain
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the underlying trajectory of A∗ to be sufficiently smooth and close to Ap∗),
the match between the two attractors is still well realized.

Example 4. In order to underline the accuracy of the PS algorithm,
let us now consider the Rabinovitch-Fabrikant system [16], which presents
strong nonlinearities

.
x1 = x2(x3 − 1 + x2

1) + ax1,
.
x2 = x1(3x3 + 1− x2

1) + ax2, (8)
.
x3 = −2x3(b+ x1x2).

One can see that the system belongs to our defined classes of systems,
either a or b is considered as control parameter. Let us fix a = −1 and switch
p := b with scheme [1p1, 1p2] for p1 = −0.3 and p2 = −0.1. The obtained
attractor A∗ is chaotic and approximates the attractor Ap∗ corresponding to
p∗ = −0.2 (Fig. 6). To underline the match, we plotted the Poincaré sections
with plane x3 = 3 (Fig. 7) and cross-correlation for the first variable x1 (Fig.
8). The negative cross-correlation values show, as remarked in [11] for all
studied systems, that besides the fact that the two time series are correlated,
they are also delayed.

Some other examples of chaos control and anticontrol can be found in
[11].

5. Conclusions and Open Problems

In this paper, we have proven that by switching the control parameter
of a system modeled by the IVP (1) within a chosen set of values PN , one
obtains an attractor which is typical for the considered system. In other
words, the PS algorithm presents a structural like stability over the parameter
switching region. Moreover, as has been pointed out, this attractor matches
the attractor obtained when p is replaced with the average of the switched
values. In this paper, the convergence is obtained via the standard Runge-
Kutta scheme and we can conclude that the PS algorithm is numerically
stable, as also underlined by the numerous simulations on several examples.
Another important characteristic is that the PS algorithm allows to obtain
a generalization of Parrondo’s paradox. Also, the PS algorithm can be used
to explain what happens with some systems in nature, when accidentally (or
not) switchings appear.

Regarding possible applications, it is to mention the possibility to use
the PS algorithm to realize control or anticontrol of chaos. Compared to the
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known algorithms, such as the OGY method for chaos control (introduced
by Ott, Grebogy and Yorke in [31]), or anticontrol (see e.g. [32]), by avoiding
tedious calculations, the PS algorithm is much easier to implement. However,
it is about a kind of control and anticontrol since only stable limit cycles and
fixed points or existing chaotic motions, respectively, can be approximated,
while with e.g. the OGY algorithm, unstable periodic orbits (UPO) can be
stabilized. Also, the PS algorithm allows to consider any attractor of a system
modeled by the IVP (1) as an infinite sequence of symbols ”C” (Chaotic)
and ”R” (Regular). For example, if one considers the scheme [2p1, 3p2] for
a given h, and considers that p1 corresponds to a chaotic motion and p2 to
some regular motion, the the obtained attractor A could be symbolized as
A = CCRRRCCRRRCC... (see also Example 1 and Example 2).

Among several existing open problems, one can mention the proofs for
other already numerically verified classes of systems, such as discontinuous
systems, or continuous/discontinuous systems of fractional order (some steps
in this direction have already been made by the author and collaborators in
[34, 35, 36]). Another interesting open problem is to study what happens
when two initial conditions are arbitrarily nearby, asymptotically approach
two different attractors i.e. the case of riddle basins (see, for example, the
paper of Lai and Grebogy [37], regarding the notion of riddle basins). This
problem becomes important especially when approximating chaotic attrac-
tors, such as the last example. Also, finding a (4)-like formula for p∗ for the
(however rare) case of systems, modeled by IVPs depending nonlinearly on
p or for Hamiltonian systems, is a challenging open problem. An analytical
proof of the existence of a bijection between a set of p values PN and a set of
N attractors, may lead to a very exciting idea: over the set of all attractors,
some binary operations could be induced from the ordered real set PN (see
Remark 4).
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Figure 1: Partition of the time interval I (sketch).

Figure 2: Bifurcation diagram of the first variable x1, for the Lorenz system.
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Figure 3: Plots of the attractors A∗ (red) and Ap∗ (blue) obtained with the scheme
S = [1p1, 1p2] with p1 = 90, p2 = 96 and p∗ = 93.

Figure 4: Plots of the attractors A∗ (red) and Ap∗ (blue) obtained with the scheme
S = [3p1, 3p2, 2p3, 3p4] with p1 = 126, p2 = 131, p3 = 170 and p4 = 220; p∗ = 161.
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Figure 5: Plots of the chaotic attractors A∗ (red) and Ap∗ (blue) obtained with the
scheme S = [3p1, 3p2, 2p3, 8p4] with p1 = 126, p2 = 131, p3 = 170 and p4 = 220; p∗ is now
p∗ = 179.4375.

Figure 6: Plots of the chaotic attractors A∗ (red) and Ap∗ (blue) obtained with the scheme
S = [1p1, 1p2] with p1 = −0.3, p2 = −0.1; p∗ = −0.2.
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Figure 7: Poincaré sections with plane x3 = 0.3.
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Figure 8: Cross-correlations for x1.
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