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We calculate the external arguments of the structure of any shrub in the Mandelbrot set.
Before calculating, we revise, expand, and clarify some tools useful for this paper: harmonics,
pseudoharmonics, the concept of structure, the structure of a shrub, and the ancestral route.
Finally we present the main contribution of this paper, a three-step algorithm which allows us to
calculate the structure of the shrub. In the first step, we use pseudoharmonics that were previously
introduced by us, in order to calculate the first and last external arguments of a structural node. In
the second step, starting from two general properties of theMisiurewicz points external arguments
introduced here by us, we present a newmethod to calculate the intermediate external arguments.
In the last step we introduce a third property that allows us to calculate the external arguments of
the representatives of the branches emerging from the structural nodes.

1. Introduction

Although the Mandelbrot set [1, 2] was discovered in 1980, such is the fascination that
continues exerting in the scientific world that it still remains heavily studied. Since this set
is a mathematical body, mathematicians are those who have contributed most to its study
[3–6]. However, we should not forget that the Mandelbrot set is the most representative
paradigm of what we mean by chaos, and experimental scientists are strongly interested
in chaotic phenomena. And these scientists, among which we find ourselves, analyze the
Mandelbrot set with a different look, usually through graphical and computational analysis,
to help them explain the chaotic behaviour found in their experiments. This is the case of this
paper, based on a very large number of computational experimental data, which are analyzed
computationally and in many cases with the help of graphic tools.
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Let us see that, indeed, the study of the Mandelbrot set is now in full force. Some
authors have introduced the fruitful field of generalized Mandelbrot set [7–15], and some
of our previous papers have been generalized and improved by these authors. In the same
way, we think that this paper is susceptible of being applied to a generalizedM-set. Another
very interesting field of application in which other authors work is the perturbation of the
Mandelbrot set, for example by introducing noise [8, 12, 14–22].

Due to the enormous complexity of the Mandelbrot set, in previous papers we have
made an effort to visualize its ordering and to simplify as much as possible its study. To
visualize its ordering we have introduced the shrubs [23], and to simplify the study we do
not analyse the whole Mandelbrot set but only what we call structure [24, 25].

In Section 2, we review these and other topics needed to calculate the structure of
any shrub in the Mandelbrot set. We start with harmonics and pseudoharmonics that will
be used later, then, we see and clarify with new contributions the concept of structure of
the Mandelbrot set, next, we introduce shrubs and analyze their structure, and, finally, we
introduce the ancestral route. Section 2 is essentially a reminder with few new contributions,
and therefore this section can be skipped by readers already familiar with these issues, and
it is in Section 3 where we give almost all the contributions of this paper, as will be seen
later.

The most important elements of the Mandelbrot set are hyperbolic components (HCs)
[5] and Misiurewicz points [26–28]. As mentioned before, we only treat the structure of the
set, which is as its skeleton. We denominate structural HCs to the HCs of the structure, and
in the same way we denominate structural Misiurewicz points to the Misiurewicz points of
the structure. Moreover, external arguments (EAs) of Douady and Hubbard [29] are the best
way to identify both the HCs, which are periodic, and the Misiurewicz points, which are
preperiodic.

In this paper we calculate the structure of any shrub in the Mandelbrot set. That is,
we will calculate the EAs of structural HCs and structural Misiurewicz points of the shrub
we are considering, based solely on the EAs of the generator of the shrub. Let us see next the
background in this field.

Devaney and Moreno-Rocha [30] calculate for the first time the EAs of a Misiurewicz
point, namely, the main node of a primary shrub. In [31], by assuming known the EAs of the
representatives of the structural branches, we calculate the EAs of any structural node of any
shrub by using pseudoharmonics and pseudoantiharmonics. In the present paper, pseudo-
harmonics will also be used, and therefore they will be reviewed in Section 2.1.2.

In Section 3 we give a three-step algorithm to calculate the structure of any shrub in
the Mandelbrot set, which is the aim of this paper. In the first step, using pseudoharmonics
that were previously introduced by us [31], we calculate the first and last external arguments
of a structural node. This first step does not involve any new contribution since the first
and last external arguments can be calculated in some particular cases in [30], and in
general in our work [31]. In the second step, we introduce two general properties of
the external arguments of the Misiurewicz points in order to introduce a new method
to calculate the intermediate external arguments of a Misiurewicz point. In the third
and final step we introduce a third property that allows us to calculate the external
arguments of the representatives of the structural branches emerging from the structural
nodes.

Based on the three-step algorithm we calculate, as we said above, the EAs of all
structural elements of any shrub starting exclusively from the EAs of the generator of the
shrub. This generator, as we will see, is always known.
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2. Previous Considerations

2.1. Harmonics and Pseudoharmonics

Harmonics/antiharmonics and pseudoharmonics/pseudoantiharmonics can be seen in [31,
32]. Since here we are going to use only harmonics and pseudoharmonics, we will only see
them. We begin by introducing the harmonics of the pair of EAs of an HC (from now on, for
our convenience, EAs will be given only in the binary expansion form).

2.1.1. Harmonics

Let (.a1, .a2) be the pair of EAs of an HC. The EAs of the harmonic of order i of (.a1, .a2) are
given by

H(i)(.a1, .a2) =

⎛
⎝.a1a2a2 · · ·a2︸ ︷︷ ︸

i

, .a2a1a1 · · ·a1︸ ︷︷ ︸
i

⎞
⎠. (2.1)

When i = 0, 1, 2, 3, . . ., (2.1) calculates a sequence of HCs and, when i → ∞, becomes

H(∞)(.a1, .a2) =

⎛
⎝.a1a2a2 · · ·a2︸ ︷︷ ︸

∞

, .a2a1a1 · · ·a1︸ ︷︷ ︸
∞

⎞
⎠ = (.a1a2, .a2a1), (2.2)

giving, as can be seen, preperiodic arguments. Therefore, they correspond to a Misiurewicz
point.

Next, we are going to introduce pseudoharmonics, which are a generalization of
harmonics.

2.1.2. Pseudoharmonics

Let (.a1, .a2) be the EAs of an HC, and let (.b1, .b2) be the EAs of another HC which is related
to the first one, as will be seen later. The EAs of the pseudoharmonic of order i of (.a1, .a2)
and (.b1, .b2) are

PH(i)
[
(.a1, .a2);

(
.b1, .b2

)]
=

⎛
⎝.a1b2b2 · · · b2︸ ︷︷ ︸

i

, .a2b1b1 · · · b1︸ ︷︷ ︸
i

⎞
⎠. (2.3)

When i = 0, 1, 2, 3, . . ., (2.3) calculates again a sequence of HCs and, when i → ∞, becomes

PH(∞)
[
(.a1, .a2);

(
.b1, .b2

)]
=

⎛
⎝.a1b2b2 · · · b2︸ ︷︷ ︸

∞

, .a2b1b1 · · · b1︸ ︷︷ ︸
∞

⎞
⎠ =

(
.a1b2, .a2b1

)
. (2.4)

Equation (2.4) calculates, as (2.2), a pair of EAs of a Misiurewicz point.
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Figure 1: Mandelbrot set and a sketch of the antenna showing the first three chaotic bands B0, B1, and B2
separated by the merging pointsmi. In each chaotic band, the more important HCs andMisiurewicz points
are shown.

When (.b1, .b2) = (.a1, .a2), (2.3) and (2.4) become (2.1) and (2.2), and then pseudohar-
monics become harmonics. Therefore, harmonics are a particular case of pseudoharmonics.
Pseudoharmonics are applied to two HCs while harmonics are applied to only one. However,
according to what we have just seen above, harmonics can be considered as pseudoharmonics
when the two HCs are the same HC.

2.2. Structure of the Mandelbrot Set

At this point we are going to showwhat wemean by structure of theMandelbrot set. To do so,
we base on a generalization of the structure of a one-dimensional quadratic map. Therefore,
we will start seeing the structure of the one-dimensional case, and then we will generalize it
to the Mandelbrot set with the help of shrubs already mentioned.

2.2.1. Structure of a One-Dimensional Quadratic Map

The concept of structure was introduced by us to study one-dimensional quadratic maps
[24] for the case of HCs. Here we extend and systematize this concept, and we apply it to
Misiurewicz points.

One-Dimensional Structural HCs

As we have just mentioned, the concept of structure is introduced by us for the first time to
calculate the structure of a one-dimensional quadratic map [24]. Indeed, using our tool, the
harmonics already introduced in Section 2.1.1, we calculate the symbolic sequences of the last
appearance HCs, what we call LAHCs, of each chaotic band. Subsequently, we show that we
could do the same with the EAs instead of with symbolic sequences [32, 33]. To study the
one-dimensional quadratic map we used the real Mandelbrot map, which is the intersection
of the Mandelbrot set with the x-axis, and to visualize it we used the Mandelbrot set antenna.

See Figure 1 which shows the Mandelbrot set and a sketch of the antenna showing
the first three chaotic bands B0, B1, and B2, which are separated by the known merging
points of the chaotic bands, m1, m2, m3, . . . (m0 is the tip of the antenna) which we know are
Misiurewicz points. In each of the chaotic bands four HCs are shown. In B0, these HCs are last
appearance HCs. The HCs of the other chaotic bands are not LAHCs in the strict sense but
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Figure 2: Mandelbrot set showing the main cardioid G0 with the period doubling cascade G1, G2, G3, . . .
and a sketch of the antenna with the first four chaotic bands B0, B1, B2, and B3 separated by the merging
points mi. Each HC of Bi can be obtained by the successive harmonics of Gi.

they are LAHCs inside each of the chaotic bands, that is, they are local LAHCs, what we call
LLAHCs. In each chaotic band Bi of Figure 1, some points mi,j between LLAHCs are shown.
These points are Misiurewicz points that divide the chaotic bands in stretches.

Now let us focus our attention on Figure 2, which also shows the Mandelbrot set and
a sketch of the antenna. In this figure we can see the main cardioid, G0, and the discs of its
period doubling cascade, G1, G2, G3, . . ., each one of them with its pair of EAs. Likewise, the
chaotic bands B0, B1, B2, and B3 are depicted, each one of them with their first LLAHCs.

As we can see in [32] and as shown in Figure 2, the EAs of the LLAHCs of the chaotic
band B0 can be calculated as the successive harmonics of G0. That is, G0 can be considered
the gene or generator of the chaotic band B0. Likewise, the EAs of the LLAHCs of the
chaotic band B1 can be calculated as the successive harmonics of G1; therefore this one can
be considered the gene of the chaotic band B1. Similarly, G2 can be considered the gene of
the chaotic band B2, G3 can be considered the gene of the chaotic band B3, and so on. Hence,
the chaotic bands B0, B1, B2, B3, . . . have their origins in the genes G0, G1, G2, G3, . . ., because
H(i)(G0),H(i)(G1),H(i)(G2),H(i)(G3), . . ., where 2 ≤ i ≤ ∞, calculate the external arguments
of the local last appearance hyperbolic components of the chaotic bands B0, B1, B2, B3, . . ..

These HCs just calculated in each chaotic band are the structural HCs of the
corresponding chaotic band and determine, together with the structural Misiurewicz points
that we will see later, the structure of such chaotic band.

Aswe know from Schleicher [34], anHC is narrow if it contains no component of equal
or lesser period in its wake. In B0, saying that an HC is an LAHC or LLAHC, is equivalent to
saying that it is narrow. The LLAHCs of the other chaotic bands are not narrow in the strict
sense, but they are narrow inside each chaotic band; that is, they are what we call locally
narrow.

Structural HCs of a chaotic band are therefore characterized by the following.

(a) Their EAs can be calculated from the gene of the chaotic band by using harmonics.

(b) They are the local last appearance HCs (i.e., LLAHCs) of the chaotic band, which is
equivalent to say that they are locally narrow.

(c) They are the lowest period (and largest size) HC in each stretch. That is why
sometimes we call them the representative of the stretch.

How can we easily know whether an HC, which is identified by its pair of EAs, is
structural or not? Or, what is the same, how can we easily know whether it is a LLAHC
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Figure 3: Mandelbrot set and a sketch of the antenna showing the first three chaotic bands B0, B1, and B2
separated by the merging pointsmi. In each chaotic band, the reduced EAs of the first LLAHCs are shown.

or locally narrow? To answer this question, let us see Figure 3, which shows again the
Mandelbrot set and a sketch of the antenna with the chaotic bands B0, B1, B2, . . .. In each of
these bands the first LLAHCs are given, each one of them with its pair of EAs. In the band B0

we see that, for each of the LLAHCs, the two EAs are consecutive numbers (of course, they
have the same number of digits). So, after the number .011 it comes the number .100, or after
the number .0111 it comes the number .1000, with no possible intermediate value unless you
increase the number of digits. Although this could be our criterion, this does not happen with
the EAs of the other chaotic bands. Note, for example, the chaotic band B1. In this band, the
EAs of the LLAHC of period 6, .011010 and .100101, are not consecutive numbers.

To solve this problem, we introduce the reduced EAs. The gene or generator of B1 is
G1 = (.01, .10) that we will take as a new unit. Therefore, in the LLAHCs of B1, we put a 0
instead of 01, and we put a 1 instead of 10. Thus, the pair of reduced EAs of the LLAHC
(with period 6) seen before is r(.011010, .100101) = (.011, .100)r . Then, although the EAs are
not consecutive numbers, the reduced EAs are indeed consecutive numbers. Obviously, we
can carry out a parallel process for any chaotic band as shown in the results of Figure 3.
Therefore, the answer to our question is

An HC is structural if its reduced EAs are consecutive numbers.

Structural Misiurewicz Points

Now let us focus our attention on the Misiurewicz points of Figure 1 (although the binary
expansions of the Misiurewicz points are not depicted in order to not overprint the figure).
First, we can see the merging points mi, which are the limits of the chaotic bands. In general,
mi = H(∞)(Gi) = M2i ,2i−1 for i = 0, 1, 2, . . . [27], a Misiurewicz point which is the upper limit
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of the chaotic band Bi (or merging point of the bands Bi and Bi−1). Let us note that the upper
limit of the chaotic band B0 is m0 = H(∞)(G0) = M1,1/2. But as we know, if m0 = M1,1/2, also
m0 = M1,1, a Misiurewicz point that is both the upper limit of B0 and the tip of the antenna.

Second we can seemi,j , those on which we focus now. Let us note that, in each chaotic
band of the figure, we depict a Misiurewicz point between every two structural HCs. As
mentioned before, these points divide the chaotic bands in stretches, that is, a stretch is the
part of the band between two of these consecutive points. These Misiurewicz points can be
calculated using the pseudoharmonics seen in Section 2.1.2.

Indeed, if we focus on the chaotic band B0, the infinite pseudoharmonic of the period-3
structural HC with G1 gives m0,1 (as we will see in Section 2.3, G1 is the second ancestor of
the HCs of the chaotic band B0). Since the EAs of the first one are (.011, .100) and the EAs of
the second one are (.01, .10), we have m0,1 = PH(∞)[(.011, .100); (.01, .10)] = (.01110, .10001),
which is a Misiurewicz point M3,1. Similarly, the infinite pseudoharmonic of the period-4
structural HC with G1 gives m0,2. Since the EAs of the first one are (.0111, .1000) and the EAs
of the second one are (.01, .10), we have m0,2 = PH(∞)[(.0111, .1000); (.01, .10)] = (.011110,
.100001), which is aMisiurewicz pointM4,1 and so on form0,3, m0,4, . . ., which areMisiurewicz
points M5,1,M6,1, . . ..

If we focus now on the chaotic band B1, the infinite pseudoharmonic of the period-
6 structural HC with G2 gives m1,1. Since the EAs of the first and second ones are
(.011010, .100101) and (.0110, .1001), respectively, we have m0,1 = PH(∞)[(.011010, .100101);
(.0110, .1001)] = (.0110101001, .1001010110), which is a Misiurewicz point M6,2. Proceeding
in the same way for m1,2, m1,3, . . ., we obtain that they are Misiurewicz points M8,2,M10,2, . . ..
Similarly, in B2 the m2,1, m2,2, . . ., are Misiurewicz points M12,4,M16,4, . . ., and, in general, in
Bi themi,j are Misiurewicz points M(j+2)2i ,2i .

Misiurewicz points we have just seen in each of the chaotic bands are the structural
Misiurewicz points of these bands. Structural Misiurewicz points of a chaotic band are
therefore characterized by the following.

(a) Their EAs can be calculated using the pseudoharmonics as we have shown above.

(b) All of them have the same periodic part, which coincides with the period of the
generator of the band.

(c) The periodic part of any other nonstructural Misiurewicz point is greater than that
of the structural Misiurewicz point.

(d) The preperiodic part of the upper end (the end farthest from the main cardioid) of
a stretch coincides with the period of the structural HC of this stretch.

Taking into account what we have just seen, it is now elementary to answer the
question of how easily to know if a Misiurewicz point is structural or not. The easiest criterion
would be that, in the chaotic band Bi, a Misiurewicz point is structural if its periodic part is
2i, that is the period of Gi, which is the generator of the chaotic band.

All the structural HCs and structural Misiurewicz points of a particular chaotic band
constitute the structure of such a chaotic band. The structure of the real Mandelbrot set is that
of all its chaotic bands.

Now let us move from the real case to the complex one; that is, our final aim is to
know the structure of the Mandelbrot set, which is complex. Now also, the structure of the
Mandelbrot set will be that of all its chaotic bands. However, as we will see, in this complex
case the chaotic bands are not as simple as in the one-dimensional case and we need to use
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shrubs to solve the problem. Therefore, in the next section first we review what is a shrub in
order to later see the structure of a shrub and then to see the structure of the Mandelbrot set.

2.2.2. Shrubs and Their Structure

Let us see what we mean by shrub, so called by the shaping of the chaotic region of the
Mandelbrot set. In parallel we will see the structure of a shrub that somehow is going to be a
generalization to the complex case of what we have seen for the real case. A general study of
shrubs can be seen in [23].

Figure 4 shows the Mandelbrot set with the EAs of some HCs. The HCs which are
directly in contact with the main cardioid are called primary HCs, and we represent them by
q1/p1, for example, 1/2, 1/3, 1/4 and 2/5 of the figure. Likewise, the HCs which are directly
in contact with the primary HCs are called secondary HCs, (q1/p1) · (q2/p2), the HCs which
are directly in contact with the secondary HCs are called tertiary HCs, (q1/p1) · (q2/p2) ·
(q3/p3), and so on, with (q1/p1) · · · (qN/pN) being anN-ary HC.

As known [23], a primary shrub is the shrub of a primary HC. Similarly, a secondary,
tertiary,. . .,N-ary shrub is the shrub of a secondary, tertiary,. . .,N-ary HC. An N-ary shrub
has N subshrubs. The subshrubs are equivalent to the chaotic bands, as we know from [35],
and therefore each subshrub has a gene or generator.

Primary Shrubs

Let us start analyzing the primary shrubs, shrub (q1/p1). Since they are primary shrubs, they
only have one subshrub. The generator of all the primary shrubs is the main cardioid [25].

Consider specifically the shrub (2/5) treated in [30, 31], which can be seen in Figure 5.
Figure 5(a) shows a sketch of the shrub (2/5), and Figure 5(b) shows a magnification of
the rectangle a in Figure 4 corresponding to shrub (2/5). Starting from the primary HC
2/5, following its period doubling cascade one reaches the Myrberg-Feigenbaum point from
which one accesses to the chaotic region, which we call shrub because of its shape. A shrub is
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Figure 5: (a) Sketch of shrub (2/5). (b)Magnification of the rectangle a of Figure 4, corresponding to shrub
(2/5).

extremely complex, so we represent only its structure, which is, as mentioned before, like the
skeleton of the shrub.

As shown in the sketch of Figure 5(a), one starts from a branch 0, which reachesM5,1, a
branch point of 5 branches, the branch 0 of arrival and other four (1, 2, 3, and 4) of departure.
This pattern is repeated indefinitely. Indeed, if we now consider, for example, the branch 2 as
a branch of arrival, one reaches again a branch point of 5 branches, the arrival branch 2 and
other four (21, 22, 23, and 24) departure branches. Then, in general, each branch point (all of
them with p1 branches) is reached by one branch of m digits and is exited through one of the
other p1 − 1 branches ofm + 1 digits.

The branches of the complex plane are equivalent to the stretches on the real axis; that
is, the branches are the generalization of the stretches. Likewise, branch points (or nodes) are
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the generalization to the complex plane of the stretches extremes of the real axis, mi,j , which
obviously are also branch points but only with two branches.

As alreadymentioned, the lowest period (and largest size)HC of each branch is called
the representative of the branch. It is elementary to calculate its period, as we know from
[23]. In the case of primary shrubs, all the branch representatives are narrow; that is, its two
EAs are consecutive numbers.

As seen in the figure, all the Misiurewicz points of the nodes under consideration have
period 1 (this is because the generator of this shrub is the main cardioid, 1/1, with period 1,
as we know from [25]) and the preperiod is the same as the period of the representative of
the arrival branch.

In these shrubs, we are considering two types of elements: the branch representatives
and the nodes or branch points of the branch extremes. Representatives of branches are
the structural HCs, as in the case of one-dimensional quadratic maps [24]. And the branch
points are the structural nodes or structural Misiurewicz points. The set of structural nodes
and structural HCs constitutes the structure of the primary shrub under consideration. To
calculate the structure of the shrub is to calculate its structural HCs and its structural nodes.

In the shrub under consideration, each branch representative (or structural HC) has 2
EAs and each structural node has 5 EAs (p1 EAs in general). When the EAs of the structural
HCs are known, with the simple use of pseudoharmonics and pseudoantiharmonics all the
EAs of structural nodes can be calculated directly, as discussed in [31]. But we insist that, in
this paper, the EAs of the structural HCs of the branches are not known, and here we calculate
the EAs of both the structural HCs of the branches and the structural nodes; that is, the entire
structure will be calculated.

Let us point out some issues of nomenclature. First, in [23], and perhaps in some
others, the preperiod of branch points was one unity more because we iterate from z0 = 0
instead of from z0 = c. Second, some authors call a primary HC a p/q whereas we call it q/p
(so that p indicates period); that is, we interchange p and q. Third, an HC or a shrub should
be written (1/1) · (q1/p1) · · · (qN/pN) or shrub ((1/1) · (q1/p1) · · · (qN/pN)); however, for our
convenience often we write (q1/p1) · · · (qN/pN) or shrub ((q1/p1) · · · (qN/pN)).

Secondary Shrubs

Let us next consider secondary shrubs, shrub ((q1/p1) · (q2/p2)). Let us analyze, for example,
(1/4) · (1/5), a secondary HC which is attached to 1/4, a primary HC which is marked by
the rectangle b of Figure 4. The shrub of this HC, shrub ((1/4) · (1/5)), is shown in Figures 6
and 7. Figure 6(a), which is a magnification of the rectangle b of Figure 4, shows the primary
disc 1/4 with some of its secondary discs, as (1/4) · (1/5) which is marked by the rectangle
c, Figure 6(b) shows a sketch of the shrub ((1/4) · (1/5)), and Figure 7 shows a magnification
of the rectangle c of Figure 6(a) corresponding to the shrub ((1/4) · (1/5)).

As we know [23], and as it is shown in the sketch of Figure 6(b), a secondary shrub has
two subshrubs, S1 and S2. It is trivial to calculate the period of each branch representative or
structural HC [23]. As can be seen in Figure 7, all the branch representatives of the subshrub
S2 are narrow; that is, their two EAs are consecutive numbers. We can not say the same for the
case of S1. However, the reduced EAs of the representatives are indeed consecutive numbers,
which means that structural HCs are locally narrow.

As also seen in Figure 7, all the Misiurewicz points of structural nodes have period 4
in S1 and period 1 in S2 (it is because the generator of S2 is the main cardioid, of period 1,
and the generator of S1 is 1/4, of period 4 [25]). Likewise, the preperiod of these Misiurewicz
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Figure 6: (a) Magnification of the rectangle b of Figure 4, corresponding to shrub (1/4). Shrub ((1/4) ·
(1/5)) is framed in the rectangle c. (b) Sketch of shrub ((1/4) · (1/5)).

points is the same as the period of the structural HC of the arrival branch of the node. In S1

the structural nodes are branch points of 5 branches (p2 branches in general), while in S2 the
structural nodes are branch points of 4 branches (p1 branches in general).

N-Ary Shrubs

Generalizing, every N-ary shrub, shrub ((1/1) · (q1/p1) · · · (qN/pN)), has N subshrubs
S1 · · ·SN . Each structural node of a given subshrub Si is a branch point of pN−i+1 branches
and therefore has pN−i+1 EAs. The period of each structural HC of a given subshrub Si is
easily calculated [23]. The structural HCs are narrow in the last subshrub and locally narrow
in all the others. As to the structural nodes, they have the same preperiod as the period of
the structural HCs of the arrival branch to the node, and they have the same period as the
period of the generator of Si, that is, the period of (1/1) · (q1/p1) · · · (qN−i/pN−i), which is
1 · p1 · · ·pN−i.

Therefore, to see the structure of a shrub we have to see the structure of all the
subshrubs, the structure of each subshrub being the set of all its structural HCs and structural
Misiurewicz points.
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Figure 7:Magnification of the rectangle c of Figure 6(a), corresponding to shrub ((1/4) · (1/5)).

Structural HCs of a subshrub are characterized by the following.

(a) The period of the structural HC of each branch is easily calculated (not its EAs
that can only be calculated directly, using pseudoharmonics, in the case of some
branches). One of the objectives of this paper is to give an algorithm for its
calculation.

(b) They are narrow HCs within each subshrub.

(c) They are the lowest period (and largest size) HC in each branch, so it is sometimes
called the representative of the branch.

Similarly, structural Misiurewicz points of a subshrub Si of an N-ary shrub are
characterized by the following.

(a) They have pN−i+1 EAs. The algorithm for calculating the EAs will be given in this
paper.

(b) They have the same periodic part, which coincides with the period of the generator
of the subshrub.

(c) The period of any nonstructural Misiurewicz point is greater than the period of the
structural Misiurewicz points.
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(d) The preperiod of the upper extreme (the farthest extreme from the main cardioid)
of a branch coincides with the period of the structural HC of this branch.

The criteria to easily know if an HC or a Misiurewicz point is structural are similar to
those we saw in the one-dimensional case, namely,

(i) an HC is structural if its reduced EAs are consecutive numbers,

(ii) a Misiurewicz point belonging to the subshrub Si is structural if it has the same
period as the period of the generator of Si.

2.3. Ancestral Route

For calculating pseudoharmonics, as known [31, 32], (.b1, .b2) has to be related to (.a1, .a2).
Indeed, (.b1, .b2) has to be an HC of the ancestral route of (.a1, .a2). An N-ary shrub, shrub
((1/1)·(q1/p1)·(q2/p2) · · · (qN/pN)), hasN subshrubs Si((1/1)·(q1/p1)·(q2/p2) · · · (qN/pN)),
1 ≤ i ≤ N, and the generator of Si((1/1) · (q1/p1) · (q2/p2) · · · (qN/pN)) is (1/1) · (q1/p1) ·
(q2/p2) · · · (qN−i/pN−i). The ancestral route of an HC is the ordered sequence of all its
ancestors [31, 33, 35]. In this paper we are going to use only the first and second ancestors
of the ancestral route. The first ancestor is the generator of Si: (1/1) · (q1/p1) · · · (qN−i/pN−i);
therefore, the second ancestor is (1/1) · (q1/p1) · · · (qN−i+1/pN−i+1).

2.3.1. (.b1, .b2) Is the First Ancestor of (.a1, .a2)

Let (.a1, .a2) be the representative of the branch d1d2 · · ·dm [23] of Si. Let (.b1, .b2) be the
first ancestor of (.a1, .a2), which is the generator (1/1) · (q1/p1) · · · (qN−i/pN−i) of Si. In
this case PH(∞)[(.a1, .a2); (.b1, .b2)] = (.a1b2, .a2b1) calculates the first and last EAs of the
Misiurewicz point placed in the upper limit of the branches d1d2 · · ·dm11 · · · [36]. Therefore,
PH(∞)[(.a1, .a2); (.b1, .b2)] = (.a1b2, .a2b1) calculates an upper limit of Si.

Examples

(a) For a primary shrub, as shrub (2/5),N = 1 and i = 1, the first ancestor is 1/1 whose
EAs are (.b1, .b2) = (.0, .1). The EAs of 2/5 are (.a1, .a2) = (.01001, .01010). Hence,
PH(∞)[(.01001, .01010); (.0, .1)] = (.01001, .01010), which are two EAs with the same
value, which correspond to a M4,1 Misiurewicz point, the ftip(2/5) [23] as shown
in Figure 5.

(b) For a secondary shrub, as shrub ((1/4) · (1/5)) of Figures 6 and 7,N = 2.

(b1) If we are in the first subshrub S1, i = 1 and the first ancestor is 1/1 ·
q1/p1, here 1/4, whose EAs are (.b1, .b2) = (.0001, .0010). If we start, for
example, from the period-24 representative of the branch 1, then (.a1, .a2) =
(.000100010001000100100010, .000100010001001000010001). Hence, PH(∞)[(.00
000100010001000100100010, .000100010001001000010001); (.0001, .0010)] =
(.00010001000100010010, .00010001000100100001), which correspond to the
first and last EAs of an M16,1 Misiurewicz point, which is one of the upper
limits of S1, 1, where a portion of S2 emerges, as shown in Figures 6 and 7.
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(b2) If we are in the second subshrub, S2, i = 2 and the first ancestor is 1/1,
whose EAs are (.b1, .b2) = (.0, .1). If we start, for example, from the period-17
representative of the branch 1 of the portion that comes from 1, then (.a1, .a2) =
(.00010001000100011, .00010001000100100). Hence, PH(∞)[(.00010001000100
011, .00010001000100100); (.0, .1)] = (.0001000100010001, .0001000100010010),
two EAs with the same value, which correspond to aM15,1 Misiurewicz point,
the ftip((1/4) · (1/5)) shown in Figures 6 and 7.

For a tertiary, quaternary,. . ., N-ary shrub the procedure will be the same.

2.3.2. (.b1, .b2) Is the Second Ancestor of (.a1, .a2)

Let (.a1, .a2) be again the representative of the branch d1d2 · · ·dm of Si, and let (.b1, .b2)
be now the second ancestor of (.a1, .a2), (1/1) · (q1/p1) · · · (qN−i+1/pN−i+1). In this case,
PH(∞)[(.a1, .a2); (.b1, .b2)] = (.a1b2, .a2b1) calculates the first and last EAs of the Misiurewicz
point placed in the upper end of the branch d1d2 · · ·dm [31, 33, 35].

Examples

(a) For a primary shrub, as shrub(2/5) of Figure 5, N = 1 and i = 1, the second
ancestor is (1/1) · (q1/p1), here 2/5, whose EAs are (.b1, .b2) = (.01001, .01010).
If we want to calculate the first and last EAs of the Misiurewicz point placed in
the upper end of the representative of the branch 0, both the second ancestor and
the representative are the same, (.b1, .b2) = (.a1, .a2) = (.01001, .01010). Hence,
PH(∞)[(.01001, .01010); (.01001, .01010)] = (.0100101010, .0101001001) are the first
and last EAs of a M5,1 Misiurewicz point, which is the upper end of the branch
0.

(b) For a secondary shrub, as shrub ((1/4) · (1/5)) of Figures 6 and 7,N = 2.

(b1) If we are in the first subshrub, i = 1 and the second ancestor is
(1/1) · (q1/p1) · (q2/p2), here (1/4) · (1/5), whose EAs are (.b1, .b2) =
(.00010001000100010010, .00010001000100100001). If we start from the repre-
sentative of the branch 0 of S1, again both the second ancestor and the
representative are the same, (.a1, .a2) = (.b1, .b2). Hence, PH(∞)[(.0001000100
0100010010, .00010001000100100001);(.00010001000100010010, .0001000100010
0100001)]= (.0001000100010001001000010001000100100001, .00010001000100
10000100010001000100010010), which correspond to the first and last EAs of
a M20,4 Misiurewicz point, which is the upper end of the branch 0 of S1 (see
Figures 6 and 7).

(b2) If we are in the second subshrub, i = 2 and the second ancestor is (1/1)·(q1/p1),
here 1/4, whose EAs are (.b1, .b2) = (.0001, .0010) (see Figure 6(a)). If we
start from the period-17 representative of the branch 1 of the portion that
comes from 1, then (.a1, .a2) = (.00010001000100011, .00010001000100100).
Hence, PH(∞)[(.00010001000100011, .00010001000100100); (.01001, .01010)] =
(.0001000100010001101010, .0001000100010010001001), which correspond to
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the first and last EAs of a M17,1 Misiurewicz point, which is the upper end
of the branch 1 of the portion of S2 that comes from 1 (see Figures 6 and 7).

We will proceed in the same way for a tertiary,. . ., N-ary shrub.

3. Calculation of the EAs of the Structure of a Shrub

The aim of this paper is the calculation of the EAs of the structure of any shrub because in
this case we can calculate the structure of all the Mandelbrot set. To do this, as mentioned in
the introduction, we give a three-step algorithm to calculate the structure of a shrub in the
Mandelbrot set. The first step uses pseudoharmonics, already introduced by us in [31] and
reviewed in Section 2.1.2. The second and third steps need new contributions that will be
introduced in the next two Sections 3.1 and 3.2, respectively. Finally, Section 3.3 introduces
the three-step algorithm.

3.1. Calculation of the Intermediate External Arguments

Once you know the first and last EAs of a node, Devaney and Moreno-Rocha [30] developed
a method for calculating intermediate EAs, the DM-R method. They applied this method
only to the main node of a primary shrub although it can also be applied to any node of such
a primary shrub. However, the method can not be applied to secondary, tertiary,. . . shrubs.
We will show here a method for calculating intermediate EAs, which is valid not only for a
primary shrub but also for the case of secondary, tertiary, and in general N-ary shrubs. To
do this, let us see next two general properties of EAs of a Misiurewicz point. Based on the
first property, we can calculate the periodic part, and, based on the second property, we can
calculate the preperiodic part.

Let us consider any structural node from which b structural branches emerge. This
node is a Misiurewicz point Mn,p, where n and p are, respectively, the preperiod and the
period. As we know, this node has b preperiodics EAs, each one with a preperiod of n digits
and a period of p—or multiple of p—digits. Let us see the first property corresponding to
periods.

Property 1. If the b EAs of a node are arranged from the lowest to the highest, then their
periods perform a left cyclic shift by β positions.

Indeed, let us see for example the main node of the shrub (2/5) of Figure 5, and let
us arrange its 5 EAs from the lowest to the highest: .0100101010, .0100110010, .0100110100,
.0101000101, and .0101001001. The periods of these 5 EAs are 01010, 10010, 10100, 00101,
and 01001, respectively. Each of these periods can be obtained from the preceding one (and
the first one from the last one) by moving the first 3 digits from the beginning to the end.
Therefore, here β = 3.

Remark 3.1. If two consecutive EAs of the cycle are known, then β can be calculated and
therefore the periodic parts of the other EAs can also be calculated.

This is what happens when the first and last (or two consecutive) EAs are known,
because we can calculate β if we analyze how the last EA is turned into the first EA (or any
EA into the next one). In the case we have just seen, the periodic part of the last external
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argument is 01001 and that of the first one is 01010. Since in order to turn 01001 into 01010
we had to move the first three digits to the end, we have β = 3, as seen before. This result
can be used to calculate the periodic part of the second, third, and fourth EAs. β could also
be calculated by the DM-R method by using the sums of Farey, but the DM-R method can
only be applied to primary shrubs, whereas our method can be applied in general to N-ary
shrubs.

Being fully general, this method can also be applied to secondary, tertiary,. . . shrubs.
Let us apply it, for example, to the branch point of the branches 0, 1, 2, 3, and 4 of the
subshrub S1 of the shrub ((1/4) · (1/5)), which is a Misiurewicz point M20,4, where 5
EAs land (see Figures 6 and 7). We assume the last and first EAs are known. To turn the
periodic part of the last external argument , 00010001000100010010, into the periodic part
of the first EA, 00010001000100100001, we have to move the first four digits to the end. So
β = 4. Using this result, we calculate the periodic part of the second, third, and fourth EAs,
which are 00010001001000010001, 00010010000100010001, and 00100001000100010001. It is of
no interest to apply it to more cases because the procedure is always the same. Therefore, let
us see now the second property concerning the preperiods.

Property 2. The preperiods of the b EAs of a node arranged from the lowest one to the highest
one have only two possible values: the preperiod of the first EA, which is kept while the
periodic part is increasing, and another second preperiod that appears and remains until the
last EA, when the periodic part decreases.

Examples

(a) Let us first apply Property 2 to a primary shrub. For example, let us continue
with the main node of the shrub (2/5) in Figure 5. As just calculated, the
periods for the 5 EAs (these EAs arranged from the lowest to highest) are
01010, 10010, 10100, 00101, and 01001, respectively. The preperiods of the first one
and last one are known: .01001 and .01010. The preperiods of the intermediate ones
have to be one of these two, being one or the other according to Property 2. As
can be seen in the previous arrangement, going from the first period to the second
period the period value increases; then the preperiod of the second EA is the same
as that of the first EA. Similarly, going from the second EA to the third EA the value
of the period increases; then the preperiod of the third EA is the same as that of
the first EA. On the contrary, going from the third EA to the fourth EA the value of
the period decreases; then the preperiod of the fourth EA becomes the same as the
preperiod of the last EA. Therefore, the full results arranged from the first to last are
.0100101010, .0100110010, .0100110100, .0101000101, and .0101001001.

(b) Let us now apply Property 2 to a secondary shrub. For example, let us continue
with the branch point of the branches 0, 1, 2, 3, and 4 of the subshrub S1 of
the shrub ((1/4) · (1/5)), which is a Misiurewicz point M20,4, where 5 EAs land
(see Figures 6 and 7). As just calculated, the periods of the 5 EAs arranged
from the lowest to highest are 00010001000100100001, 00010001001000010001,
00010010000100010001, 00100001000100010001, and 00010001000100010010. The
preperiods of the first EA and last EA are known: .0001000100010001001 and
.00010001000100100001, respectively. The preperiods of the intermediate ones
have to be one of these two. As can be seen in the previous arrangement,
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going from first to second, from second to third, and from third to fourth,
the period value increases; then the preperiods of the second, third, and
fourth EAs are the same as that of the first EA. Then the full results
arranged from the first to last are .0001000100010001001000010001000100100001,
.0001000100010001001000010001001000010001, .0001000100010001001000010010000
100010001, .0001000100010001001000100001000100010001, and .00010001000100100
00100010001000100010010.

It is not worth setting an example of a tertiary,. . ., N-ary shrub because the procedure
is always the same.

3.2. Calculation of the External Arguments of
a Structural Hyperbolic Component

Let us see a new property which will allow us to calculate the EAs of the representatives, or
structural HCs, of a branch.

Let (.a1, .a2) be the periodic EAs of the period-p representative of a branch. Let
(.b1c1, .b2c2) be the two preperiodic EAs of the lower extreme of the branch which are closest
to (.a1, .a2), and let (.d1e1, .d2e2) be the two preperiodic EAs of the upper extreme of the
branch which are closest to (.a1, .a2) (the lower/upper extreme is the nearest/farthest from
the main cardioid).

Property 3. In each of the two groups {.a1, .b1c1, .d1e1} and {.a2, .b2c2, .d2e2} the three EAs
have the same first p digits.

Remark 3.2. If we know .b1c1 or .d1e1, then we also know .a1. Likewise, if we know .b2c2 or
.d2e2, then we also know .a2.

Examples

(a) Let us see an example of a primary shrub, as usual the shrub (2/5) of Figure 5.
Look at the branch 1, whose branch representative has period 6 and whose upper
and lower extremes are the Misiurewicz points M5,1 and M6,1. The EAs of the
representative of the branch are (.010011, .010100), obviously both periodic ones,
the first one being on the right of the branch and the second one on the left of
the branch. From the lower extreme of the branch 5 EAs emanate, in this case
preperiodic ones, but we will consider only two of them, those nearest to the EAs of
the branch representative, which in this case are the third and fourth EAs of M5,1.
Likewise, from the upper extreme of the branch 5 EAs emanate, again preperiodic
ones, but we will consider only two of them, those closest to the EAs of the branch
representative, which in this case are the first and last EAs of M6,1. In total we
have six EAs, and we will group the three on the right of the branch (right group)
and the three on the left of the branch (left group). The right and left groups
are {.010011; .0100110100; .01001101010} and {.010100; .0101000101; .01010001001},
respectively. As we can see, in both the right one and the left one, the first 6 digits
of the 3 EAs in each group match, as indicated by Property 3. Therefore, in any
of the previous two groups, if one knows the preperiodic EA from one of the two
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extremes of the branch one also knows the corresponding periodic EA of the branch
representative, as indicated by Remark 3.2.

(b) Let us see next an example of a branch of a secondary shrub, namely, the
branch 1 of the subshrub S1 of the shrub ((1/4) · (1/5)) of Figures 6 and 7 with
which we are working. The representative of the branch 1 has period 24 and
the lower and upper extremes are Misiurewicz points M20,4 and M24,4. As we
can see in Figure 7, the right and left groups are {.000100010001000100100010;
.0001000100010001001000100001000100010001; .0001000100010001001000100001000
1000100100001} and {.000100010001001000010001; .0001000100010010000100010001
000100010010; .00010001000100100001000100010001000100010010}. As we can see
again, in both the right group and the left group the first 24 digits of the three EAs
in each group match. Therefore, in any of the previous two groups, if one knows
the preperiodic EA of one of the two extremes of the branch, one also knows the
corresponding periodic EA of the branch representative.

Again, it is not worth analysing the example of a tertiary,. . ., N-ary shrub because the
procedure is always the same.

3.3. Three-Step Algorithm to Calculate the External Arguments of
the Structure of a Shrub

Using what we have seen so far, both in Section 2 (where small new contributions are
introduced) and in Sections 3.1 and 3.2 (which contain totally new contributions), we can
calculate all the EAs of the structure of any shrub ((q1/p1) · · · (qN/pN)), which is the aim of
this paper.

To show the calculation algorithm in a general way, let us suppose that we start from
the representative of the branch d1d2 · · ·dm of the subshrub Si, whose EAs, (.a1, .a2), are
known. The calculation algorithm consists of three steps given below.

(1) Using pseudoharmonics reviewed in Section 2.1.2, we calculate either the first and
last EAs of the upper extreme of the branch (when (.b1, .b2) is the second ancestor
of (.a1, .a2)) or the first and last EAs of the upper extreme of d1d2 · · ·dm11 · · · , which
is either a tip or a point where a portion of a new subshrub is born (when (.b1, .b2)
is the first ancestor of (.a1, .a2)).

(2) Using Properties 1 and 2 introduced in Section 3.1, we calculate the EAs which are
intermediate between the first one and the last one calculated in step (2.1).

(3) Using Property 3 of Section 3.2, we calculate the EAs (.a′1, .a
′
2) of the representative

of a branch d1d2 · · ·dmdm+1 with one digit more than the preceding one (of course,
the lower extreme of the branch d1d2 · · ·dmdm+1 is the upper extreme of the branch
d1d2 · · ·dm).

Obviously, if we want to calculate all the EAs of the structure of any shrub
((q1/p1) · · · (qN/pN)), which was the aim of this paper, we should start from the branch 0
instead of starting from a general branch d1d2 · · ·dm. But the representative of the branch 0 is
(q1/p1) · · · (qN/pN) whose EAs are always known, as we will see in the following examples.
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Examples

(a) Example of a Primary Shrub

Let us consider a primary shrub, shrub (q1/p1); for example let us see again the shrub (2/5)
of Figure 5. Suppose that we do not know any data of the structure of the shrub with the
exception of the value of the EAs of the starting HC, (.a1, .a2) = (.01001, .01010), which is
the representative of the branch 0. Note that this HC is a disc of the periodic part of the
Mandelbrot set, and the EAs of these discs are always known because they can be calculated
by either the Schleicher algorithm [37], if it is a primary disk, or with both the Schleicher
algorithm and the tuning algorithm [38], if it is a secondary disk or a higher order one. As
seen in Section 2.3, the infinite pseudoharmonic of (.a1, .a2) = (.01001, .01010) and its second
ancestor, which is itself, calculate the first and last EAs of the upper extreme of the branch
0, obtaining PH(∞)[(.01001, .01010); (.01001, .01010)] = (.0100101010, .0101001001), which are
the first and last EAs of the 5 EAs of the Misiurewicz point M5,1.

As seen in Section 3.1, using Properties 1 and 2 we calculate the intermediate EAs
of such an upper extreme of the branch 0, and we obtain that the 5 EAs of that point,
arranged from the lowest to highest, are .0100101010, .0100110010, .0100110100, .0101000101,
and .0101001001. As seen in Section 3.2, applying Property 3 we can calculate the EAs of the
representatives of branches 1, 2, 3, and 4. Indeed, taking into account the third and fourth
EAs, we calculate the period-6 representative of the branch 1, (.a′1, .a

′
2)b1 = (.010011, .010100);

taking into account the first and second EAs, we calculate the period-7 representative of the
branch 2, (.a′1, .a

′
2)b2 = (.0100101, .0100110); taking into account the fourth and fifth EAs, we

calculate the period-8 representative of the branch 3, (.a′1, .a
′
2)b3 = (.01010001, .01010010);

taking into account the second and third EAs, we calculate the period-9 representative of
the branch 4 (.a′1, .a

′
2)b4 = (.010011001, .010011010).

From here, we can repeat the process indefinitely in order to calculate the whole
structure of the shrub (2/5). Indeed, by considering for example the branch 1, the first step
calculates the first and last EAs of the upper extreme of the branch, the second step calculates
the intermediate EAs, and the third step calculates the EAs of the representatives of branches
11, 12, 13, and 14. If we start from the branch 2, the first two steps calculate the EAs of the
upper extreme of the branch and the third step calculates the EAs of the representatives of
branches 21, 22, 23, and 24. We operate in the same way if we start from the branches 3 or 4
to finally calculate the representatives of branches 31, 32, 33, and 34, or branches 41, 42, 43,
and 44. Starting now from any of the branches of two digits, for example, from the branch 32,
with the first two steps the EAs of the upper extreme of the branch are calculated and with
the third step the EAs of the representatives of branches 321, 322, 323, and 324 are calculated.
And so on.

(b) Example of a Secondary Shrub

Let us consider a secondary shrub, shrub ((q1/p1) · (q2/p2)), for example the repeatedly
used shrub ((1/4) · (1/5)) which can be seen in Figures 6 and 7. The EAs of the
secondary HC (1/4) · (1/5) (it is a disk of the periodic region, therefore its EAs can be
calculated by using the Schleicher algorithm and the tuning algorithm) are (.a1, .a2) =
(.00010001000100010010, .00010001000100100001). Since it is a secondary shrub, N = 2, and
therefore it has two subshrubs, S1 and S2 that we calculate below.
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(b1) First Subshrub, S1

Let us first calculate the structure of the first subshrub. First of all, we have to
calculate the first and last EAs of the upper extreme of the branch 0. Therefore, the
pair (.b1, .b2) has to be the EAs of the second ancestor of (.a1, .a2), that is, (1/1) ·
(q1/p1) · · · (qN−i+1/pN−i+1) where N = 2 and i = 1; or, what is the same, the EAs of
(1/4) · (1/5). Then (.b1, .b2) = (.a1, .a2). Therefore, as we know from Sections 2.1.2 and 2.3,
PH(∞)[(.00010001000100010010, .00010001000100100001) ;(.00010001000100010010, .0001000
1000100100001)] = (.0001000100010001001000010001000100100001, .00010001000100100001
00010001000100010010), which correspond to the first and last EAs of a M20,4 Misiurewicz
point, which is the upper extreme of the branch 0 of S1. As discussed in Section 3.1, using
Properties 1 and 2 we calculate the intermediate EAs of this upper extreme of the branch
0 and we obtain that the 5 EAs, arranged from the lowest to highest, are .000100010001
0001001000010001000100100001, .0001000100010001001000010001001000010001, .0001000100
010001001000010010000100010001, .0001000100010001001000100001000100010001, and .0001
000100010010000100010001000100010010. As discussed in Section 3.2, by applying Property 3
we can calculate the EAs of the representatives of the branches 1, 2, 3, and 4, whose
periods are 24, 28, 32, and 36,respectively. Indeed, by taking into account the fourth
and fifth EAs, we calculate the representative of the period-24 branch 1, (.a′1, .a

′
2)b1 =

(.000100010001000100100010, .000100010001001000010001); by taking into account the third
and fourth EAs, we calculated the representative of the period-28 branch 2, (.a′1, .a

′
2)b2 =

(.0001000100010001001000010010, .0001000100010001001000100001); by taking into account
the second and third EAs, we calculate the period-32 representative of the branch 3,
(.a′1, .a

′
2)b3 = (.00010001000100010010000100010010, .00010001000100010010000100100001);

by taking into account the first and second EAs, we calculate the period-36 represen-
tative of the branch 4, (.a′1, .a

′
2)b4 = (.000100010001000100100001000100010010, .00010001

0001000100100001000100100001) (for reasons of space, Figure 7 only shows the EAs of the
period-24 representative).

From here, we can repeat the process indefinitely in order to calculate the whole
structure of the first subshrub. By applying the previous three steps for each of these branches,
we first calculate the EAs of the upper extreme of the branch and finally the EAs of the
representatives of the branches emerging from such an upper extreme. For example, if we
start from the period-24 representative of the branch 1, we first calculate the EAs of the upper
extreme of the branch 1, the five EAs of M24,4, and then the representatives of the branches
11, 12, 13, and 14, and so on.

(b2) Second Subshrub, S2

Let us calculate next the structure of the second subshrub. The second subshrub is constituted
by what we call portions [23], each of which is born from one extreme of the first
subshrub, d1d2 · · ·dm11 · · · . Let us focus on the portion S2 that is born in 1, a Misiurewicz
point M16,1 that is a branch point of 4 branches (Figures 6(b) and 7). But 1 is both one
starting point of S2 and one end point of S1. Therefore, the first and last EAs of M16,1

can be calculated as an upper extreme of S1. As we know from Section 2.3, in this case
(.b1, .b2) corresponds to the first ancestor of (.a1, .a2), that is (1/1) · (q1/p1) · · · (qN−i/pN−i),
where N = 2 and i = 1, or, what is the same, 1/4 whose EAs are (.b1, .b2) =
(.0001, .0010). To reach 1, we can start for example from the period-24 representative of
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the branch 1 and then (.a1, .a2) = (.000100010001000100100010, .000100010001001000010001).
Hence, PH(∞)[(.000100010001000100100010, .000100010001001000010001); (.01001, .01010)] =
(.00010001000100010010, .00010001000100100001), which correspond to the first and last EAs
of M16,1.

As seen in Section 3.1, by using Properties 1 and 2 we calculate the two intermediate
EAs of 1 and we obtain that the four EAs of this point, arranged from the lowest to
highest, are .00010001000100010010, .00010001000100010100, .00010001000100011000, and
.00010001000100100001. As seen in Section 3.2, by applying Property 3 we can calculate
the EAs of the representatives of branches 1, 2, and 3 of periods 17, 18, and 19,
respectively. Indeed, taking into account the third and fourth EAs, we calculate the period-
17 representative of the branch 1, (.a′1, .a

′
2)b1 = (.00010001000100011, .00010001000100100);

taking into account the second and third EAs, we calculate the period-18 representative of the
branch 2, (.a′1, .a

′
2)b2 = (.000100010001000101, .000100010001000110); taking into account the

first and second EAs, we calculate the period-19 representative of the branch 3, (.a′1, .a
′
2)b3 =

(.0001000100010001001, .0001000100010001010).
By applying the previous three steps to each of these branches, we firstly calculate

the EAs of the upper extreme of the branch and finally the EAs of the representatives of the
branches emerging from such an upper extreme. For example, if we start from the period-17
representative of the branch 1, we first calculate the EAs of upper extreme of the branch 1 and
then the representatives of branches 11, 12, and 13, and so on. Obviously, it would be exactly
the same for the other portions.

Let us note that in the first of the three steps, if we are in 1, (.b1, .b2) has to be
the EAs of the first ancestor of (.a1, .a2) since 1 is an extreme of S1; that is, the EAs of
(1/1) · (q1/p1) · · · (qN−i/pN−i), where N = 2 and i = 1, or, what is the same, 1/4 whose
EAs are (.b1, .b2) = (.0001, .0010). For the following cases, (.b1, .b2) has to be the EAs of
the second ancestor of (.a1, .a2) since we are in an extreme of a branch; that is, the EAs of
(1/1) · (q1/p1) · · · (qN−i+1/pN−i+1) where N = 2 and now i = 2 because now we are in S2, and
once again we have the EAs of 1/4, (.b1, .b2) = (.0001, .0010).

We will proceed in the same way for a tertiary,. . ., N-ary shrub. However, we do not
show any example of these cases because of the difficulty of using so long binary expansions
and, mainly, because they do not give any new contribution.

To finish, note that in all the cases the binary expansions of the EAs obtained from this
three-step algorithm have not any effect of truncation or other numerical errors.

4. Conclusions

In this paper we calculate the EAs of the structural HCs and structural Misiurewicz points
in the Mandelbrot set. To do this, we first review the tools we are going to use in this paper,
as the harmonics and pseudoharmonics. Likewise, we review the concept of structure, the
structure of a shrub, and the ancestral route, all of them widely described and clarified.

We introduce two new general properties of the external arguments of theMisiurewicz
points, in order to introduce a new method to calculate the intermediate external arguments.

We also introduce a new third property that allows us to calculate the EAs of the
representatives of the branches if the EAs of the extreme structural nodes of these branches
are known.
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We give an algorithm in three steps which allows us to calculate the EAs of all the
structural components and structural nodes of a shrub, that is, it allows us to calculate the
structure of any shrub and hence the structure of the Mandelbrot set.
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Mathématiques d’Orsay, pp. 56–60, 1985.

[4] A. Douady, Chaotic Dynamics and Fractals, Academic Press, New York, NY, USA, 1986.
[5] B. Branner, “Chaos and fractals,” in Proceedings of the Symposium on Applied Mathematics, R. L. Devaney

and L. Keen, Eds., vol. 39, p. 75, AMS, 1989.
[6] J. Milnor, “Self-similarity and hairiness in the Mandelbrot set,” in Computers in Geometry and Topology,

vol. 114, pp. 211–257, Marcel Dekker, New York, NY, USA, 1989.
[7] X. Wang, Y. He, and Y. Sun, “Accurate computation of periodic regions’ centers in the general M-set

with integer index number,” Discrete Dynamics in Nature and Society, vol. 2010, Article ID 653816, 12
pages, 2010.

[8] X. Wang, R. Jia, and Y. Sun, “The generalized Julia set perturbed by composing additive and
multiplicative noises,” Discrete Dynamics in Nature and Society, vol. 2009, Article ID 781976, 18 pages,
2009.

[9] X.-Y. Wang and Y.-Y. Sun, “The general quaternionic M-J sets on the mapping z ← zα + c(α ∈ �),”
Computers & Mathematics with Applications, vol. 53, no. 11, pp. 1718–1732, 2007.

[10] X.-Y. Wang and L.-N. Gu, “Research fractal structures of generalizedM-J sets using three algorithms,”
Fractals, vol. 16, no. 1, pp. 79–88, 2008.

[11] X. Wang, X. Zhang, Y. Sun, and F. Li, “Dynamics of the generalized M set on escape-line diagram,”
Applied Mathematics and Computation, vol. 206, no. 1, pp. 474–484, 2008.

[12] X.-Y. Wang, P.-J. Chang, and N.-N. Gu, “Additive perturbed generalized Mandelbrot-Julia sets,”
Applied Mathematics and Computation, vol. 189, no. 1, pp. 754–765, 2007.

[13] X. Wang and R. Jia, “Rendering of the inside structure of the generalized M set period bulbs based on
the pre-period,” Fractals, vol. 16, no. 4, pp. 351–359, 2008.

[14] W. Xingyuan, J. Ruihong, and Z. Zhenfeng, “The generalizedMandelbrot set perturbed by composing
noise of additive and multiplicative,” Applied Mathematics and Computation, vol. 210, no. 1, pp. 107–
118, 2009.

[15] X. Wang, Z. Wang, Y. Lang, and Z. Zhang, “Noise perturbed generalized Mandelbrot sets,” Journal of
Mathematical Analysis and Applications, vol. 347, no. 1, pp. 179–187, 2008.

[16] J. Argyris and I. Andreadis, “On the influence of noise on the coexistence of chaotic attractors,”Chaos,
Solitons and Fractals, vol. 11, no. 6, pp. 941–946, 2000.

[17] J. Argyris, I. Andreadis, and T. E. Karakasidis, “On perturbations of the Mandelbrot map,” Chaos,
Solitons and Fractals, vol. 11, no. 7, pp. 1131–1136, 2000.

[18] J. Argyris, T. E. Karakasidis, and I. Andreadis, “On the Julia set of the perturbed Mandelbrot map,”
Chaos, Solitons and Fractals, vol. 11, no. 13, pp. 2067–2073, 2000.

[19] J. Argyris, T. E. Karakasidis, and I. Andreadis, “On the Julia sets of a noise-perturbed Mandelbrot
map,” Chaos, Solitons and Fractals, vol. 13, no. 2, pp. 245–252, 2002.



Discrete Dynamics in Nature and Society 23

[20] A. Negi and M. Rani, “A new approach to dynamic noise on superior Mandelbrot set,” Chaos, Solitons
and Fractals, vol. 36, no. 4, pp. 1089–1096, 2008.

[21] Y. Y. Sun and X. Y. Wang, “Noise-perturbed quaternionic Mandelbrot sets,” International Journal of
Computer Mathematics, vol. 86, no. 12, pp. 2008–2028, 2009.

[22] I. Andreadis and T. E. Karakasidis, “On a topological closeness of perturbedMandelbrot sets,”Applied
Mathematics and Computation, vol. 215, no. 10, pp. 3674–3683, 2010.
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