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In this paper, we provide a rigorous mathematical foundation for continuous approximations
of a class of systems with piecewise continuous functions. By using techniques from the theory
of differential inclusions, the underlying piecewise functions can be locally or globally approx-
imated. The approximation results can be used to model piecewise continuous-time dynamical
systems of integer or fractional-order. In this way, by overcoming the lack of numerical methods
for differential equations of fractional-order with discontinuous right-hand side, unattainable
procedures for systems modeled by this kind of equations, such as chaos control, synchroniza-
tion, anticontrol and many others, can be easily implemented. Several examples are presented
and three comparative applications are studied.
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1. Introduction

Despite the doubts in the 17th century regarding
the practical applicability of fractional derivatives
since they have no clear geometrical interpretations
[Podlubny, 2002], there are nowadays a lot of work
on systems of fractional-order and their related
applications in many domains, such as physics, engi-
neering, mathematics, finance, chemistry, and so
on (see, for example, the books [Oldham, 1974;
Caponetto et al., 2010] or the papers of Caputo
[2007]).

On the other hand, discontinuous functions
can be found in two-dimensional mechanical sys-
tems such as systems with dry friction, oscillating
systems with combined dry and viscous damping,
forced vibrations, brake processes with locking
phases, control synthesis of uncertain systems, con-
trol theory, calculus of variations, systems with stick

and slip modes, braking processes with locking
phases, PDEs, elastoplasticity, and also in game
theory, optimization, biological and physiologi-
cal systems, electrical (chaotic) circuits, networks,
power electronics, etc. (see e.g. [Wiercigroch & de
Kraker, 2000; Cortés, 2008; Bernardo et al., 2008],
and the references therein).

Therefore, dynamical systems of fractional-
order, modeled with piecewise continuous functions,
have gained more and more interest for real sys-
tems which follow behaviors modeled better with
fractional-order equations than of integer order.

Although there are numerical methods for
fractional-order DE (see e.g. [Diethlem et al., 2002;
Diethlem, 2003; Dorcak, 2002]) and also for DE with
discontinuous right-hand side (see e.g. [Dontchev &
Lempio, 1992; Acary & Brogliato, 2008; Lempio &
Veliov, 1998; Kastner-Maresch, 1992]), to the best
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of our knowledge, there are no numerical methods
for DE of fractional-order with discontinuous right-
hand side. Consequently, modeling continuously or
smoothly the underlying systems could be of a real
interest for example in chaos control, synchroniza-
tion, anticontrol and so on, and also for quantitative
analysis.

The class of piecewise continuous functions
f : R

n → R
n defining these systems, which will

be continuously approximated, has the following
form:

f(x(t)) = g(x(t)) + A(x(t))s(x(t)), (1)

with g : R
n → R

n a single-valued, vector, at least
continuous function, and s : R

n → R
n, s(x) =

(s1(x1), s2(x2), . . . , sn(xn))T a vector-valued piece-
wise function, with si : R → R, i = 1, 2, . . . , n, real
piecewise constant functions, An×n a square matrix
of real functions.

The following assumption will be needed:

(H1) The function As is discontinuous in at least
one of its components.

The smoothness of the functions xm sgn(x), for
different values of m has been discussed in [Danca,
2007].

This form of f , appearing in the great majority
of nonlinear piecewise continuous systems of frac-
tional or integer order, is modeled by the following
Initial Value Problem (IVP):

Dq
∗x(t) = f(x(t)), x(0) = x0, t ∈ I = [0,∞).

(2)

Here, with Dq
∗, 0 < q ≤ 1 (q = 1 for the integer

order), denotes the operator commonly used in
fractional calculus: Caputo’s differential operator
of order q (also called smooth fractional derivative
with starting point 0)

Dq
∗x(t) =

1
Γ(1 − q)

∫ t

0
(t − τ)−q d

dt
x(τ)dτ,

with Γ Euler’s Gamma function

Γ(z) =
∫ t

0
tz−1e−tdt, z ∈ C, Re(z) > 0.

To overcome the problem of numerical inte-
gration of systems modeled by (2), the discontin-
uous problem will be transformed into a continuous
one. For this purpose, Filippov’s approach [Filip-
pov, 1988] will be used along with some basic results

from the theory of fractional differential inclu-
sions [Aubin & Cellina, 1984; Aubin & Frankowska,
1990].

The obtained approximation results, targeting
the piecewise constant functions s, are valid for
a large class of functions, such as Heaviside func-
tion H, rectangular function (as difference of two
Heaviside functions), and signum, one of the most
encountered in practical applications.

The null set of the discontinuity points of f , M
(with zero Lebesgue measure µ), is generated by the
discontinuity points of the components si.

Because the systems modeled by the IVP (2)
are autonomous, hereafter, unless otherwise men-
tioned, we drop the time variable in writing.

Next, consider some examples.
The piecewise linear one-dimensional function

f : R → R

f(x) = 2 − 3 sgn(x),

has M = {0} and the graph shown in Fig. 1.
Generally, discontinuous dynamical systems (of

integer or fractional-order) can be found in R
2, such

as the following fractional variant of the system
which models a unit mass which is the subject of
a discontinuous spring force [Cortés, 2008]:

Dq1∗ x1 = x2, Dq2∗ x2 = −sgn(x1), (3)

where

g(x) =
(

x2

0

)
, A =

(
0 0

−1 0

)
,

s(x) =

(
sgn(x1)

sgn(x2)

)
.

In this case, M = {(0, x2), x2 ∈ R}.

Fig. 1. Graph of f(x) = 2 − 3 sgn(x).
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(a) (b)

Fig. 2. Graph of the piecewise continuous component of Chua’s system (4). (a) Before approximation and (b) after
approximation.

Another typical example of a mechanical sys-
tem, which models a friction oscillator [Wierci-
groch & de Kraker, 2000] and can model wings of
insects [Kunze, 2000], is governed by:

ẍ + λẋ + x3 + ϕ(x, ẋ)sgn(ẋ) = 0,

where ϕ is some function, λ is the bifurcation
parameter. After the system is written in the stan-
dard form, we have:

g(x) =

(
x2

−λx1 − x3
1

)
, A =

(
0 0

0 −ϕ(x1, x2)

)
.

The following three-dimensional system is a
fractional variant of the discontinuous Chua system
[Brawn, 1993]:

Dq1∗ (x) = −2.571x1 + 9x2 + 3.857 sgn(x1),

Dq2∗ (x) = x1 − x2 + x3,

Dq3∗ (x) = −px3,

(4)

where p ∈ R is the bifurcation parameter [see the
graph of the piecewise continuous component in
Fig. 2(a)].

This paper is organized as follows: In Sec. 2,
the approximation of f defined by (1) is presented,
while in Sec. 3, three applications are analyzed.

2. Approximation of f

In this section, we show how piecewise continuous
functions f modeled by (1) can be continuously

approximated. Precisely, since g is continuous, we
are interested in approximating the piecewise con-
stant functions si.

For this purpose, let us consider the IVP (2)
whose right-hand side will be first transformed into
a set-valued function via the Filippov regulariza-
tion [Filippov, 1988]. In this way, the single-valued
initial problem is reformulated as a set-valued one,
namely a differential inclusion of fractional-order of
the form

Dq
∗x ∈ F (x), x(0) = x0, for a.a. t ∈ I, (5)

where F : R
n ⇒ R

n is a set-valued vector function,
mapping into the set of subsets of R

n, which can
be defined in several ways (see [Henderson & Oua-
hab, 2012], one of a few related works on fractional
differential inclusions).

A simple (convex) expression of a set-valued
function F is obtained by the so-called Filippov reg-
ularization [Filippov, 1988; Aubin & Cellina, 1984;
Aubin & Frankowska, 1990]:

F (x) =
⋂
ε>0

⋂
µ(M)=0

× conv(f(z ∈ R
n : |z − x| ≤ ε\M)). (6)

As can be seen, F (x) is the convex hull of f(x)
[see Figs. 3(a) and 3(b)], µ being the Lebesgue mea-
sure and ε the radius of the ball centered at x. At
those points where f is continuous, F (x) consists of
one single point, which coincides with the value of f
at this point (i.e. we get f(x) back as the right-hand

1550146-3

1st Reading



August 19, 2015 9:26 WSPC/S0218-1274 1550146

M.-F. Danca

(a) (b) (c)

Fig. 3. (a) Graph of a set-valued function F , (b) the closure of the convex hull of F and (c) for x = x1 and x = x3, F (x) are
segments, while for x = x2, F (x2) is a point, f(x2).

side: F (x) = {f(x)}). At the points belonging to M ,
F (x) is given by (6) [Fig. 3(c)].

More on the Filippov regularization and gen-
eralized solutions to discontinuous equations can
be found in, e.g. the review papers [Cortés, 2008;
Hájek, 1979].

In order to justify the use of the Filippov regu-
larization to some physical systems, we must choose
small values for ε, so that the motion of the physical
systems is arbitrarily close to a certain solution of
the underlying differential inclusion (it tends to the
solution, as ε → 0).

If the piecewise constant functions si are sgn,
their set-valued form, obtained with Filippov regu-
larization and denoted usually by Sgn : R ⇒ R, is
defined as follows [see Fig. 4(a) before regulariza-
tion and Fig. 4(b) after regularization]:

Sgn(x) =


{−1} x < 0,

[−1, 1] x = 0,

{+1} x > 0.

(7)

By applying the Filippov regularization to f ,
one obtains the following set-valued function

F (x) := g(x) + A(x)S(x), (8)

with

S(x) = (S1(x1), S2(x2), . . . , Sn(xn))T , (9)

where Si : R → R is the set-valued variant of si,
i = 1, 2, . . . , n (Sgn(xi) in general).

Because the set-valued character of F in (8)
is generated by Si, which are real functions, the
notions and results presented next are considered
in R, for the case of n = 1, but they are also valid
in the general cases of n > 1.

Next, consider some general set-valued function
F : R ⇒ R.

The graph of a set-valued function F is defined
as follows:

Graph(F ) := {(x, y) ∈ R × R, y ∈ F (x)}.
Remark 2.1. Due to the symmetric interpretation of
a set-valued function as a graph (see e.g. [Aubin &
Cellina, 1984]), we say that a set-valued function
satisfies a property if and only if its graph satisfies
it. For instance, a set-valued function is said to be
closed if and only if its graph is closed.

Definition 2.1. As set-valued function F is upper
semicontinuous (u.s.c.) at x0 ∈ R, if for any open

(a) (b) (c)

Fig. 4. (a) Graph of sgn, (b) graph of Sgn and (c) graph of a continuous approximation.
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set B containing F (x0), there exists a neighborhood
A of x0 such that F (A) ∈ B.

We say that F is u.s.c. if it is so at every x0 ∈ R.
U.s.c., which is a basic property, practically

means that the graph of F is closed.

Definition 2.2. A single-valued function h : R → R

is called an approximation (selection) of the set-
valued function F if

h(x) ∈ F (x), ∀x ∈ R.

Generally, a set-valued function admits (infinitely)
many approximations [see Fig. 4(c) for the case of
Sgn function]. For the theory of selections for set-
valued functions, compare [Aubin & Cellina, 1984;
Aubin & Frankowska, 1990] and [Kaster-Maresch &
Lempio, 1993].

Notation. Let C0
ε(R) be the class of real contin-

uous approximations s̃ : R → R of the set-valued
function F which satisfy

(i) Graph(s̃) ⊂ Graph(B(F, ε)).
(ii) For every x ∈ R, s̃(x) belongs to the convex

hull of the image of F .

Above, B(x, ε) is the disk of radius ε centered at x.

The set-valued functions Si, i = 1, 2, . . . , n, can
be approximated due to the Approximate Theorem,
also called Cellina’s Theorem (see [Aubin & Cel-
lina, 1984, p. 84] and [Aubin & Frankowska, 1990,
p. 358]), which states that a set-valued function
F , with closed graph and convex values, admits C0

ε

approximations.

Remark 2.2. Cellina’s Theorem provides local Lip-
schitzean approximations. Since local Lipschitzean
functions are also continuous, in this paper we will
consider C0

ε approximations.

2.1. Global approximation

The global approximation of Si, i = 1, 2, . . . , n,
defined over R, is assured by the following lemma.

Lemma 1. For every ε > 0, the set-valued func-
tions Si, i = 1, 2, . . . , n, admit global C0

ε approxima-
tions.

Proof. Si, for i = 1, 2, . . . , n, are convex u.s.c.
(see e.g. the Remark in [Filippov, 1988, p. 43] or
Example in [Aubin & Frankowska, 1990, p. 39] for
u.s.c. property) and, via Remark 2.1, are nonempty
closed valued functions. Therefore, they verify Cel-
lina’s Theorem which guaranties the existence of C0

ε

approximations on R. �

Notation. Denote by s̃i : R → R the global
approximations of Si.

For the sake of simplicity hereafter, ε is con-
sidered as having the same value for each compo-
nent s̃i(xi), i = 1, 2, . . . , n. Also, the index i will be
dropped, unless specified.

The constructive proof of Cellina’s Theorem
allows us to ease the approximations’ choice. Any
single-valued function on R, with the graph in the ε-
neighborhood, is an approximate selection of S from
the Cellina Theorem. However, some of the best
candidates for s̃ are the sigmoid functions which
provide the required flexibility and to which the
abruptness of the discontinuity can be easily modi-
fied. If S(x) = Sgn(x), one of the mostly utilized
sigmoid approximations is the following function
s̃gn1:

s̃gn(x) =
2

1 + e−
x
δ

− 1 ≈ Sgn(x), (10)

where δ is a positive parameter which controls the
slope in the neighborhood of the discontinuity man-
ifold x = 0. In Fig. 5(a), ˜sgn is plotted as a function
of δ, while in Fig. 5(b), it is plotted for two distinct
values.

The smallest ε values, necessarily to embed
s̃gn within an ε-neighborhood of Sgn (as stated by
Cellina’s Theorem), depends proportionally on δ.
However, finding an explicit relation for δ as a
function of ε is a difficult task. Moreover, for x �= 0,
s̃gn is identical to the single-valued branches of Sgn
(the horizontal lines ±1) only asymptotically, for
x → ±∞. For example, for δ = 1/100, at the point
x = 0.06, the difference is of order of 10−3, even the
two graphs look apparently identical in the under-
lying points A or B [Fig. 5(c)]. To reduce the size
of ε to e.g. 10−4, δ should be of order of 10−5. From
a theoretical point of view, the approximation can
be obtained with infinity precision.

1Sigmoid functions include the ordinary arctangent such as 2
π arctan x

ε , the hyperbolic tangent, the error function, the logistic
function, algebraic functions like x√

ε+x2 , and so on.
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(a)

(b) (c)

Fig. 5. (a) Sigmoid function, gsgn, for δ ∈ [10−5, 10−1], (b) gsgn for δ = 1/50 and δ = 1/1000 and (c) graphs of Sgn (red) and
of gsgn (blue) for δ = 1/100. The detail shows the difference between the two graphs.

For the Heaviside function, which in its piece-
wise constant variant can be expressed in terms
of the signum function by H(x) = 1

2 [1 + sgn(x)],
the approximate sigmoid function (10) becomes
H̃(x) = 1

1+e−
x
δ
.

Now, we can derive the following result, which
assures the possibility to approximate f globally.

Theorem 1. Let f be defined by (1). If g is
continuous, then for every ε > 0, there exist global
approximations of f, f̃ : R

n → R
n, such that

f̃(x) = g(x) + A(x)s̃(x) ≈ f(x), (11)

Theorem 1 states that systems modeled by the
IVP (2) can be continuously modeled by the fol-
lowing IVP:

Dq
∗(x) = f̃(x),

with f̃ defined by (11).

For example, the function

f(x) = −x2 + sgn(x − 0.5) (12)

can be globally continuously approximated on R

(dotted line in Fig. 6), having the approximated
form

f̃(x) = −x2 + s̃gn(x − 0.5)

= −x2 +
2

1 + e−
x−0.5

δ

− 1. (13)

Here, f is transformed first into the set-valued func-
tion F (x) = −x2 + Sgn(x− 0.5) (red line in Fig. 6),
and then approximated via s̃gn.

2.2. Local approximation

In order not to affect significantly the physical char-
acteristics of the underlying system, it is desirable
to approximate S only on some tight ε-neighbor-
hoods of the discontinuity x = 0, not on the entire
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Fig. 6. Global approximation f̃ (dotted blue color) of the
function f(x) = −x2 + sgn(x − 0.5). The set-valued form,
F (x) = −x2 + Sgn(x − 0.5), is plotted in red, and the ε-
neighborhood (slowly enlarged) where the approximation, f̃ ,
is embedded, and plotted in yellow.

real axis, as global approximations given by Theo-
rem 1 do, when the difference error between S and
s̃ persists along the entire real axis R. Graphically
speaking, we want to restrict the approximation of
S only within a narrow vertical band of width ε
centered along the vertical axis. This is allowed by
the particular (convex u.s.c.) form of the set-valued
functions S, and by the great flexibility afforded by
continuous functions which can be glued or pasted,
without altering the continuity property. In this
case, the global approximations (such as the sig-
moid functions) are no longer useful [see Fig. 5(b)
for the case of Sgn], but other kind of selections,
such as the local approximations, can be used.

The following corollary, which is a simple con-
sequence of the results of Sec. 2.1, ensures the exis-
tence of local approximations for the set-valued
functions S (see Fig. 7).

Corollary 2.1. For every ε > 0, S admits locally
C0

ε approximations s̃ε : [−ε, ε] → R, which verify
the neighborhood continuity conditions

s̃ε(±ε) = S(±ε). (14)

In this case, s̃ε can also be continuously extended
on R, obtaining a new global approximation ˜̃s

˜̃s(x) =

{
s̃ε(x), x ∈ [−ε, ε],

S(x), x /∈ [−ε, ε].
(15)

Among the simplest functions s̃ε, which have
the advantage to be directly evaluated by comput-
ers, there are the cubic polynomials s̃ε : R → R

(higher order does not always improve accuracy)
defined by

s̃ε(x) = ax3 + bx2 + cx + d, a, b, c, d ∈ R. (16)

Other possible candidates are spline functions,
which are constructed via piecewise polynomials.

The fact that in (14) there are four coefficients
to be determined and only two conditions, means
that there are an infinity of choices for s̃ε. This
implies that s̃, given by (15), can be even smoothly
extended on R, by imposing near the gluing con-
ditions (14), the supplementary differentiability
conditions at the boundary of the discontinuity
neighborhood

d

dx
s̃ε(±ε) =

d

dx
S(±ε). (17)

For the case of Sgn function, when the gluing
and smoothing conditions are s̃ε(±ε) = ±1 and
d
dx s̃ε(±ε) = 0 respectively, the local smooth approx-
imate function, denoted by s̃gnε, becomes

s̃gnε(x) = − 1
2ε3

x3 +
3
2ε

x ≈ Sgn(x),

x ∈ (−ε, ε) (18)

and using (15) on R, Sgn is approximated by the
following piecewise function:

˜̃sgn ≈
{

s̃gnε(x), x ∈ [−ε, ε],

±1, (or sgn(x)), x /∈ [−ε, ε].
(19)

Fig. 7. Graph of Sgn (red color) and graph of a continu-
ous local approximation gsgnε (blue color), defined inside of
some ε-neighborhood of x = 0. Outside the ε-neighborhood,
gsgnε(x) = Sgn(x).
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(a) (b)

Fig. 8. (a) Graph of the polynomial local approximation gsgnε of the set-valued Sgn function, defined only within the interval
[−ε, ε]. Outside, |gsgnε| → ∞ and (b) local approximation of the function f(x) = −x2 + sgn(x − 0.5). The approximation is
smooth: at the edges of the interval (−ε, ε), the supplementary conditions (17) have been imposed (same tangent slope at
these points).

Remark 2.3. While s̃ is not useful for locally approx-
imations [see Fig. 5(a)], s̃ε cannot be used for
globally approximation of S since it is unbounded
outside the interval (−ε, ε) and tends to ±∞ as
x → ±∞ [see Fig. 8(a)].

The cubic functions (16) have a great flexibility,
being able to connect smoothly any kind of piece-
wise continuous functions on some ε-neighborhood
of the discontinuity. For example, by using the
smoothness conditions (17), the function (12) can

Fig. 9. Comparison between global and local approximations in the case of piecewise continuous function f(x) = −10x2 +
sgn(x) for a big ε = 0.5 value (in order to obtain a clear image). Local approximation gsgnε (green color) is smoothly connected
with the graph of f (red color) at the edge points of the ε-interval (point B precisely). The global approximation gsgn is only
close to the graph of f (point A precisely).
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be smoothly approximated in some neighborhood
of the point x = 0.5, with the cubic function (16)
[see Fig. 8(b) where ε is chosen to be 1/5 for a clear
image].

Compared to the case of globally approxima-
tion, the local approximations, s̃ε, which are deter-
mined in the neighborhood of the discontinuity
points, at which they are generated, are identical
with the single-valued branches of S, for |x| ≥ ε
(see also Fig. 9 for the case of function f(x) =
−10x2 + sgn(x)).

Using ˜̃sgn, for example to Chua’s system (4),
one obtains

Dq1∗ x1 =


−2.571x1 + 9x2 + 3.857 s̃gnε(x1),

x ∈ [−ε, ε],

−2.571x1 + 9x2 + 3.857 sgn(x1),

x /∈ [−ε, ε],

Dq2∗ x2 = x1 − x2 + x3,

Dq3∗ x3 = −px3.

The first component on the right-hand side, which
is smoothly approximated, has the image as shown
in Fig. 2(b) with, again, a large ε.

The following theorem, similar to Theorem 1,
states the possibility to approximate locally the
right-hand side of IVP (2).

Theorem 2. Let f be defined by (1). If g is
continuous, then for every ε > 0, there exist local
approximations of f, f̃ε : R

n → R
n, such that

f̃ε(x) = g(x) + A(x)s̃ε(x) ≈ f(x), x ∈ [−ε, ε].
(20)

Remark 2.4. If g and s̃ε or s̃ are smooth functions,
then one obtains a smooth approximation of f . In
this case, we can consider to have approximations of
class Ck

ε (R), with k > 1, and therefore, the IVP (2)
can be smoothly modeled.

Fig. 10. Sketch of the proposed approximation procedure. s̃
stands for either local or global approximation.

Summarizing, as can be seen in Fig. 10, aided
by Cellina’s Theorem, and depending on g prop-
erties (continuity or smoothness), the discontinu-
ous function f , given by (1), can be continuously
or smoothly approximated, by simply replacing the
discontinuous function s with either (10) or (16).

3. Numerical Tests

In order to illustrate how this approximation
apparatus is utilized, we consider two practi-
cal examples of piecewise continuous systems and
one theoretical one-dimensional piecewise contin-
uous system. To emphasize the rightness of the
approximation results, the practical examples are
of fractional-order.

The use of Caputo derivative in the IVP (2) is
fully justified in practical examples since in these
problems we need physically interpretable initial
conditions, i.e. Caputo derivative satisfies these
demands. Even if there are some applications dis-
cussed in recent years with q > 1, the great major-
ity of the physical phenomena are modeled with
0 < q < 1. Accordingly, the initial condition can
be considered in the standard form [Diethlem et al.,
2002], e.g. for the IVP (2), x(0) = x0. Therefore, we
consider the case of q < 1.

Two of the most known methods to solve
fractional-order equations are the multistep predic-
tor–corrector Adams–Bashforth–Moulton method
(see e.g. [Diethlem et al., 2002; Diethlem, 2003]) and
the Grünwald–Letnikov discretization method (see
e.g. [Li & Zeng, 2012; Scherer et al., 2011]). In this
paper, we use the Grünwald–Letnikov discretization
method with the integration step-size h = 0.005.

The Hausdorff distance dH [Falconer, 1990],
used to underline the rightness of the results, is of
order of 10−5.

(1) The fractional variant of the chaotic attractor of
piecewise linear Chen’s system presented in [Danca
et al., 2015; Aziz-Alaoui & Chen, 2002], has the
following model:

Dq1∗ x1 = a(x2 − x1),

Dq2∗ x2 = (c − a − x3)sgn(x1) + cdx2,

Dq3∗ x3 = x1 sgn(x2) − bx3.

(21)

With the global approximation (10), the system
becomes

Dq1∗ x1 = a(x2 − x1),
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(a) (b)

Fig. 11. Overplotted chaotic attractors of the piecewise linear Chen system (21) of fractional-order, obtained with both
approximations.

Dq2∗ x2 = (c − a − x3)s̃gn(x1) + cdx2,

Dq3∗ x3 = x1 s̃gn(x2) − bx3.

By applying the local approximation (19), one
obtains:

Dq1∗ x1 = a(x2 − x1),

Dq2∗ x2 =


(c − a − x3)s̃gnε(x1) + cdx2,

x1 ∈ [−ε, ε],

(c − a − x3)sgn(x1) + cdx2,

x1 /∈ [−ε, ε],

Dq3∗ x3 =

{
x1 s̃gnε(x2) − bx3, x2 ∈ [−ε, ε],

x1 sgn(x2) − bx3, x2 /∈ [−ε, ε].

With ε = 10−5, and δ = 10−5, (q1, q2, q3) =
(0.99, 0.98, 0.97) and coefficients: a = 1.15, b = 0.15
and c = 2, one obtains the phase plots in Fig. 11,
where both (overplotted) attractors have been gen-
erated starting from the same initial conditions. As
can be seen, both attractors match very well.

In the next example, we study a regular motion.

(2) Let us consider a planar mechanical system, an
“inverted” Duffing-like system (due to the negative-
ness of the ẋ coefficient) of fractional-order modeled
by the following equation (see [Danca & Lung, 2013]
for a general form of integer order):

ẍ + 0.18ẋ − 1.5x + 0.8x3 + 6.5 sgn(ẋ)

= 35 cos(0.88t). (22)

The system evolves along a stable limit cycle. In
Fig. 12(a), both attractors, determined with local
and global approximations, are plotted superim-
posed, after transients are neglected. Figures 12(b)
and 12(c) reveal the fact that, for δ = 10−5 and
ε = 10−5, both approximations are of same order
of approximation, the difference being of order
of 10−15.

(3) Finally, we consider the following one-
dimensional piecewise system of integer-order,
which can be found e.g. in [Kastner-Maresch, 1992]
or [Dontchev & Lempio, 1992] and which allows us
to calculate, empirically, the approximation errors:

ẋ(t) = 2(h(t) − x(t)) + h′(t)

+ 2 − 2 sgn(x(t)), t ∈ [0, 2], (23)

where

h(t) = − 4
π

arctan(t − 1), x(0) > 0. (24)

As shown in [Kastner-Maresch, 1992], the prob-
lem (23) admits a unique solution, given by:

x(t) =

{
h(t), t ∈ [0, 1],

0, t ∈ (1, 2].
(25)

The numerical solutions of this system present
the sliding phenomena (oscillations), which appear
near the discontinuity (manifold x = 0), and are
in full accordance with the convergence order of
numerical methods for discontinuous problems (see
e.g. [Kastner-Maresch, 1992; Dontchev & Lempio,
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(a) (b)

(c)

Fig. 12. (a) Superimposed regular motions of Duffing system (22) corresponding to local (blue color) and global (red color)
approximations. (b) Difference between the local and global approximation for the first component x1. (c) Difference between
the local and global approximations for the second component x2.

1992]). In Fig. 13(a), the exact solution and the
numerical solutions corresponding to the global and
local approximations are plotted respectively. Fig-
ures 13(b) and 13(c) show the difference between
the two approximate trajectories and the exact solu-
tion, which is of order of 10−5, while in Fig. 13(c)
this difference is plotted for t ∈ [1, 2]. The qual-
itative difference between these two plots is due
to the mentioned sliding phenomenon. However,

the error is the same in both intervals, namely, of
order 10−5, which are even better than the errors
obtained when the IVP is integrated by methods
for DE with discontinuous right-hand side [Kastner-
Maresch, 1992].

The results for this example have been obtained
with the Standard Runge–Kutta method, with h =
10−5 (better errors can be obtained for smaller h,
but needs a longer computer time).
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(a) (b)

(c)

Fig. 13. (a) Superimposed solutions of the uni-dimensional piecewise continuous system (23) corresponding to the exact
solution (25), x (black), global approximation x̃ (blue) and local approximation x̃ε (red). (b) Difference between the exact
solution and the approximate solutions for t ∈ [0, 1]. (c) Difference between the exact solution and the approximate solutions
for t ∈ [1, 2]. The oscillations are typical sliding phenomenon.

4. Conclusion and Discussions

In this paper, we have proven that piecewise contin-
uous functions defined by (1) can be continuously
or smoothly approximated. Accordingly, the under-
lying systems (2), of fractional or integer order,
can be modeled by continuous or smooth dynamical
systems.

The approximations of the discontinuous com-
ponents can be made locally or globally. This is pos-
sible due to the upper semicontinuity of the convex

set-valued functions, obtained with Filippov’s regu-
larization applied to the piecewise constant func-
tions s, a property which allows the use of the
Approximate Cellina’s Theorem.

For global approximations, one of the most
accessible functions is the sigmoid function (10),
while for local approximations, polynomials seem
to be the most appropriate choice. However, the
steps to prove the existence of these approximations
apply for other continuous approximations.
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Even the global (polynomial) approximations,
from a theoretical point of view, give better per-
formances than the global approximations (due to
the more realistic approximation of the underly-
ing physical phenomenon), some aspects related to
numerical implementations, require further studies.
Thus, as shown in the last example in the last sec-
tion, the errors outlined that both methods give the
same accuracy. Therefore, the choice of any one of
these approximations should take into account the
physical properties of the considered systems. Fur-
ther studies are to be done.

Although Cellina’s Theorem assures as small
as desired approximation errors, in the numerical
examples, we are limited by several kinds of errors,
such as the convergence errors of the utilized numer-
ical methods, errors arising from the finite precision
representation of real numbers on computers, etc.

The approximation errors in the case of the
discontinuous equation (23), where one knows the
exact solution, are consistent with the errors of
the numerical schemes for discontinuous systems
(see e.g. [Kastner-Maresch, 1992]).

Since there are no numerical methods for frac-
tional piecewise continuous systems, the approx-
imation apparatus we provided in this paper
could be of real interest. For example, procedures
unattainable to piecewise continuous systems of
fractional-order, like chaos control, synchronization,
anticontrol, etc., can be attained in this way. Also,
these approximation procedures can be utilized for
piecewise continuous systems of integer order mod-
eled by (2), so as to obtain continuous systems.
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